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Abstract

Many matching markets have dynamic features; for example, the assignment of

children to public daycare centers, teachers to public schools, high-level bureaucrats to

di¤erent regions, and even the well-known school choice problem (once student mobil-

ity, or sibling priorities, are taken into account). In a dynamic market, the priorities

of one side of the market might depend on previous allocations, which generates in-

centives for manipulations. In a �nite dynamic school choice problem, for example,

no mechanism exists that is both stable and strategy-proof. We show that under suit-

able restrictions on the schools�priorities, the deferred acceptance mechanism (which

is stable under truth-telling) is not manipulable if the market is large. Formally, if the

schools�priorities satisfy a condition which we call IPA, then the fraction of players

with incentives to manipulate the deferred acceptance mechanism approaches zero as

the number of participants increases. Conversely, under a priority structure that fails to

satisfy this condition, such as the one currently in place in the Danish daycare system,

the deferred acceptance mechanism remains manipulable even in large markets.
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1 Introduction

Game theory has been used with a great deal of success to redesign assignment markets. The

well-known problem of allocating students to public schools illustrates well the usefulness of

the �eld of market design in practical applications.1

One important objective in the school choice literature has been to propose mechanisms

that implement a stable matching, which are said to be free of �justi�ed envyness� from

parents. From a practical point of view, stability is a very desirable property of a matching,

and it is argued that mechanisms that produce stable matchings are less likely to be subject

to unraveling, and more prone to succeed.2 For this reason, much attention has been given

to the deferred acceptance mechanism, which is strategy-proof and implements the student-

optimal stable matching. The mechanism has since been adopted in the New York and

Boston public school systems.

Apart from a few recent exceptions, the literature on matching, and in particular, the

literature on school choice problem has focused on the static many-to-one matching problem.

However, in reality, many markets have dynamic features. In a separate paper (Kennes et al.

(2012)), we introduced the problem of allocating children to public daycare centers, which

can be viewed as a dynamic version of the school choice problem. Children are assigned

to daycare centers, but parents can choose to keep their child at home for longer and they

can switch daycare centers over time. Moreover, at any point in time, a daycare might have

overlapping cohorts of children. In that paper, we proved an impossibility result: there is

no mechanism that is stable and strategy-proof. In particular, contrary to the static many-

to-one matching problem, the deferred acceptance mechanism is manipulable by students.

A few recent papers also worked on similar dynamic centralized matching problems and

have also proved negative results concerning stability and strategy-proofness.3 Given the

importance of a stable matching in many-to-one matching markets, the question of how to

implement such allocations in dynamic markets became a relevant question from a theoretical

and practical point of view.

In this paper, we study the incentives for manipulation in the daycare assignment prob-

lem when the market is large. The deferred acceptance mechanism yields a stable matching

1See Roth (2002), for example, or Abdulkadiro¼glu and Sönmez (2003) for a seminal paper on the school
choice problem.

2See Roth (2002), and Kojima and Pathak (2009).
3For example, Pereyra (2013) studies the allocation of teachers to public schools, and Dur (2011) considers

a dynamic school choice problem in which the incentives for placing siblings are taken into account.
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in dynamic markets when all participants report truthfully, but the mechanism is manipula-

ble.4 Here, we identify conditions for the implementation of this mechanism as the number

of participants increases, assuming time-separable preferences. We show that if each day-

care center�s priorities over children are history dependent only through previously enrolled

children, then the deferred acceptance mechanism can be implemented in large markets.

Speci�cally, we show that the fraction of children who �nd it pro�table to misreport their

preferences when all other participants are reporting truthfully approaches zero as the total

number of participants increases. Conversely, if the priorities of the daycares depend on the

matching of the previous period through schools other than the one that a child is currently

enrolled in, then the system becomes manipulable and there is no �large market relief.� It

has been argued already that non-strategy-proof mechanisms might be implemented success-

fully, provided that the strategic issues are not severe (see Kojima and Pathak (2009) and

Budish and Cantillon (2012), for example). What our result suggests is that the Deferred

Acceptance mechanism might be successfully implemented in practice.

Denmark, which illustrates our daycare assignment problem, adopts a priority structure

in which each child that has not been allocated to any school will have a higher priority

then any previously allocated student in the subsequent period, except in the exact daycare

where this allocated student is. This rule is denoted �child care guarantee.�If the deferred

acceptance mechanism is applied period-by-period in a market with a priority structure that

follows the Danish priorities, the system will be manipulable even in large markets. However,

if we were to drop the child care guarantee, then the incentives for manipulation would vanish

as the market increases.

Many other important markets share the dynamic properties of our daycare problem.

For example, there is considerable mobility of children enrolled in public schools (Schwartz

et al. (2009)). Moreover, in some places, the priorities of schools over children may be

history-dependent: in Boston, children enrolled in preschools have a higher priority over

other children in that same school, which generates excess demand for preschools. The

scope for manipulation generates dissatisfaction and frustration on parents, as illustrated by

The Boston Globe.5 We show that using the deferred acceptance for the Boston schools with

the current priority structure implies that the system is manipulable even in the large.

The theory of dynamic market design is very recent. Ünver (2010) studies the kidney

exchange problem considering a dynamic environment in which the pool of agents evolves

over time. Kurino (2013), Pereyra (2013), Dur (2011) and Kennes et al. (2012) study the

centralized matching when there is overlapping generations of agents. Bloch and Cantala

4Kennes et al. (2012).
5Ebbert (2011).
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(2011) study a dynamic matching problem, but focus on the long-run properties of di¤erent

assignment rules. Our paper is also related to the literature of large matching markets, for

example, Kojima and Pathak (2009) and Azevedo and Leshno (2013).

The paper is organized as follows, in section 2, we provide the model and the main

de�nitions. We also describe a version of the deferred acceptance mechanism, from Kennes

et al. (2012). In section 3 we examine the main properties of the mechanism in small

economies. Section 4 contains the results for an economy with a continuum of agents. In

section 5 we prove our main convergence result.

2 Model

2.1 Setup

Time is discrete and t = �1; 0; � � � ;1. There is a �nite number of in�nitely lived schools
(daycares in our example). Let S = fs1; � � � ; smg be the set of schools. Let �S = S [ fhg
where h stands for the option of staying home. Let r = (rs)s2 �S be the vector of capacities.

We assume that rs <1 for all s 2 S and rh =1.
We will consider two di¤erent set-ups. Mainly, we are interested in environments in which

the set of children is �nite, but large. However, for expositional reasons, we will also consider

the case in which the set of children is uncountable. In either one of the two set-ups, we

assume that each child can attend school when she is one and two years old.6 The type of

a child i is a triplet (ti;�i; xi) where ti is the period in which child i is one year old, �i is
the child�s strict preference ordering over pairs of schools, and xi = (xsi )s2S � [0; 1)m is the
child�s priority score vector at period ti. This priority vector is �xed at the child is birth

year, but may change as the child gets older if the schools�priorities are history-dependent,

as we will often assume. We will specify how this priority score vector evolves over time as

a function of the allocations. If a child i has a priority score vector xi and a child j, born

in the same period has a priority score vector given by xj, with xsi > x
s
j, for some s 2 S, we

have that child i has a higher priority than child j at school s. The set of all possible types

is T .
At period t, a �nite set of one year old children It arrives, i.e., i 2 It if and only if ti = t.

Consequently, at any period t the set of school-age children is It�1 [ It. As time passes
the set of school-age children evolves in the �overlapping generations�(OLG) fashion. Let

I = (It)
1
t=�1. An economy is a pair E = (I; r).

Now let us de�ne the matching in our setting.

6The restriction to two periods is for simplicity and will not a¤ect our main results.
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De�nition 1 (Matching). A period t matching �t is a correspondence �t : It�1 [ It [ �S !
It�1 [ It [ �S such that

1. For all i 2 It�1 [ It, �t(i) 2 �S

2. For all s 2 �S, j�t(s)j � rs and �t(s) � It�1 [ It [ ;

3. For all i 2 It�1 [ It, i 2 �t(s) i¤ s = �t(i).

A matching � is a collection of period matchings: � = (��1; �0; � � � ; �t; � � � ).

We use the notation �(i) to denote the pair of schools that i is matched with under

matching �: �(i) =
�
�ti(i); �ti+1(i)

�
. Let Mt be the set of period t matchings.

For technical convenience we assume that at period �1 every child stays home, i.e., the
schools start their operation at period 0. Consequently, all matchings we consider have a

common period -1 matching in which all school age children are matched with h.

Children�s Preferences

The notation (s; s0) denotes the allocation in which a child is placed at school s at age 1

and at school s0 at age 2. We write (s; s0) �i (�s; �s0) if either (s; s0) �i (�s; �s0) or (s; s0) = (�s; �s0).
Throughout the paper, we maintain the following assumption on preferences:

Assumption 1 (Weak Separability). If (s; s) �i (s0; s0) for some i, s and s0, then (s; s00) �i
(s0; s00) and (s00; s) �i (s00; s0) for any s00 6= s0.
Let WS be the set of preferences satisfying Assumption 1.

This assumption means that there is no externality (complementarity) from attending

di¤erent schools. Speci�cally, attending an inferior school and a di¤erent second school is

always less attractive than attending a superior school and the same second school. Note

that the assumption does not rule out the possibility of complementarity from attending

the same school for two periods. In other words, our assumption allows for switching costs:

a child with weakly separable preferences might prefer attending an inferior school for two

periods rather than attending two di¤erent superior schools in di¤erent periods.

Now let us de�ne a stronger version of the weak separability assumption which rules out

the possibility of the case we have discussed above.

De�nition 2 (Separability). If (s; s) �i (s0; s0) for some i, s and s0, then (s; s00) �i (s0; s00)
and (s00; s) �i (s00; s0) for any s00.
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Switching costs are consistent with separability, as long as they are not very large. We

here remark that the sole purpose of the separability assumption is to simplify the presen-

tation of some of our examples, i.e., none of our results rely on this stronger assumption.

Lastly, let us de�ne the concept of isolated preferences Pi(�t�1) which depends on the

original preferences of the child and the previous period�s matching. This concept is �rst

de�ned by Kennes et al. (2012) and is particularly useful to �nd stable matchings.

De�nition 3 (Isolated Preference Relation). For given �t�1, isolated preference relation
Pi(�t�1) is a binary relation satisfying

1. For 8i 2 It : sPi(�t�1)s0 if and only if (s; s) �i (s0; s0) for any s 6= s0 2 �S

2. For 8i 2 It�1 : sPi(�t�1)s0 if and only if (�t�1(i); s) �i (�t�1(i); s0) for any s 6= s0 2 �S.

Let P (�t�1) = (Pi(�t�1))i2It�1[It :

Schools�Priorities and History Dependence

We have already discussed that xi is the priority score vector of child i at period ti.

Assumption 2 (Strict Priorities). For any two players i; j in It�1[It, xsi 6= xsj for all s 2 S.

Given the dynamic nature of our problem, in our model we will consider the case in which

the priority score of child i at period ti + 1 depends on the previous period�s matching. For

instance, in the Danish system currently in use, the schools give the highest priorities to their

currently enrolled children. Given the importance of this restriction on the Danish system,

and on its natural appeal, i.e. children will not be forced out of a school, we will maintain

this assumption throughout our paper. To incorporate this restriction in our model, we

de�ne the priority score function of child i at school s as Xs
i : Mti�1 [Mti ! [0; 1]n for all

i 2 I and s 2 S. For now we assume that the priority score of a child changes only at the
school she has attended in the previous period.

Assumption 3 (Independence of Past Attendances (IPA)). Each school�s priority score
function satis�es the following conditions:

1. Xs
i (�ti�1) = xi for all �ti�1.

2. (Priority for currently enrolled children)

Xs
i (�ti) =

(
1 + � if i 2 �ti(s)
xi otherwise

.

where � is an arbitrarily small positive number.
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This assumption states that a child who is matched to school s when she is one will have

the highest priority score at school s when she is two. In addition, the child�s priority score

at any other school remains the same unless she was matched to that school at the age of 1.

Here, observe that the attendees of any school s at some period t will have the same priority

score of 1 at the school in the following period. This assumption, as we will see later, does

not cause any problem to run the version of the deferred acceptance algorithm used in this

paper�note that given assumption 2 we will not have the problem of having a positive mass

of students with the same score competing for limited vacancies in a given school.

In the current Danish assignment system IPA is not satis�ed: the schools give priority

to two year old children who have not attended any school in the previous period over one

year old children as well as over the two year old children who have attended school in the

previous period. Although we assume the IPA condition for the majority of this paper,

we will examine the current Danish priority system closely when we study the incentives

to manipulate the deferred acceptance mechanism. For this reason we de�ne the current

Danish priority system.

De�nition 4 (Danish Priorities). A priority scoring system is Danish if the priority score

function for each school s and each student i satis�es the following 2 conditions :

1. Xs
i (�ti�1) = x

s
i for all �ti�1.

2. Xs
i (�ti) =

8><>:
1 + � if i 2 �ti(s)
1 if i 2 �ti(h)
xi otherwise

where, recall, � is an arbitrarily small positive number.

In the Danish priority scoring system a child who stays at home when she is young will

have a priority score of 1 in all schools in the following period. Consequently, by staying

home at age 1, a child jumps ahead of almost all children (except the school�s previous

period�s attendees) in the priority ranking of any school at age 2. Here, we impose the

following tie-breaking rule. If the mass of children applying to a particular school is greater

than the school�s capacity (something that could potentially happen if many students stay

home when they are 1 year old), the priorities of schools over these children will follow the

original priority score vector of these children.

Periodwise Deferred Acceptance Mechanism

Kennes et al. (2012) adapts the Gale and Shapley deferred acceptance mechanism to the

daycare assignment problem when the schools priorities are strict. This mechanism which we

7



call the periodwise deferred acceptance (PDA) runs starting period 0 as period �1 matching
is �xed. In period 0 the school age children report their isolated preferences based on the

previous period�s matching which is �xed. Now the period 0 matching is found by running

the following algorithm in �nite rounds. Each child submits the complete list with her

isolated preferences for that particular period t, i.e. taking as given the matching in period

t� 1.

Round 1: Each child is tentatively assigned to her most preferred school according to her

isolated preferences. Each school tentatively assigns its spots to the proposers according to

its priority ranking. If the number of proposers to school s is greater than the number of

available spots rs, then the remaining proposers are rejected.

In general, at:

Round k: Each child whose �rst option was rejected in the previous round is tentatively

assigned to her next choice according to her isolated preferences. Each school considers the

pool of children who it had been holding plus the current proposers. Then it tentatively

assigns its spots to this pool of children according to its priority ranking. The remaining

proposers are rejected.

The algorithm terminates when no proposal is rejected and each child is assigned her �nal

tentative assignment.

In period 1, the schools�priorities scores are updated based on the period 0 PDA match-

ing. In addition, all the school age children in this period report their isolated preferences

based on the period 0 PDA matching. Now using the algorithm described above, we �nd

the period 1 PDA.

In each period t � 2 we can run the above algorithm recursively based on the preceding

period�s PDA matching.

The PDA mechanism yields a unique matching in each economy. We will use the notation

�DA for the PDA matching.

Here we remark that to run the PDA mechanism at any given period one only uses the

information up till that period. This is very important property to have if one uses the PDA

mechanism in practice. In addition, Kennes et al. (2012) show that the PDA mechanism

always yields a strongly stable matching � the stability concept adapted to the dynamic

setting of the daycare assignment.

Let the period t threshold score of school s corresponding to the PDA matching be pst
such that

pst =

(
0 if

���DAt (s)
�� < rs

infi2�DAt (s)X
s
i (�

DA
t�1) otherwise
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We use the following notations: pt = (pst)s2 �S and p = (pt)
1
t=1.

3 Truth Telling in Small Economies

It is well known that in static settings, the student proposing DA mechanism is strategy-

proof. Kennes et al. (2012)7 show that the PDA mechanism is not strategy-proof. In fact,

in some small markets a child �nds it pro�table to misrepresent her preferences even when

everyone else reports her preferences truthfully.

We use the following notations: �DA is the PDA matching if every player reports truth-

fully; �̂DA for the resulting PDA matching if player i misreports her preferences alone.

Theorem 1 (TT is not optimal when others report truthfully). In some small markets
some children have incentives to misreport her preferences even when everyone else reports

her preferences truthfully.

Proof. Consider the following example: there are 3 schools fs; s1; s2g and each school have
a capacity of one child. There is no school-age child until period t� 1. Suppose It�1 = fig,
It = fi1; i2g, It+1 = fi0g and I� = ; for all � � t+ 2. In addition, suppose that

xsi > xsi0 > xsi1 > xsi2
xs1i > xs1i1 > xs1i2 > xs1i0

xs2i > xs2i1 > xs2i0 > xs2i2

We consider two preference pro�les which di¤er from each other in child i1�s preferences.

Each child�s preferences are separable. Child i�s top choice is (s; s). The preferences of

children i2 and i0 satisfy the following conditions:

(s2; s2) �i2 (s1; s1) �i2 (s; s)

(s2; s2) �i0 (s; s) �i0 (s1; s1)

Child i1�s preference ordering is �1i1 under preference pro�le 1 and is �2i1 under pro�le 2.
These preferences are given as follows:

(s; s) �1i1 (s1; s1) �1i1 (s2; s2)

(s; s) �2i1 (s2; s2) �2i1 (s1; s1)

In addition, suppose (s2; s) �1i1 (s1; s1).
Under pro�le 1, the PDA matching is as follows: �t�1(i) = �t(i) = s, �t(i1) = �t+1(i1) =

s1, �t(i2) = �t+1(i2) = s2, �t+1(i0) = s and �t+2(i0) = s2.
7Their result is even stronger: no strongly stable and strategy proof mechanism exists.
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Under pro�le 2, the PDA matching �̂ is as follows: �̂t�1(i) = �̂t(i) = s, �̂t(i1) = s2,

�̂t(i2) = s1, �̂
t+1(i1) = s, �̂

t+1(i2) = s1, �̂
t+1(i0) = s2 and �̂

t+2(i0) = s2.

Under pro�le 1, child i1�s matching is (s1; s1) if she reports her preference truthfully

but it is (s2; s) if she misreports her preference as if under pro�le 2. But (s2; s) �1i1 (s1; s1).
Consequently, child i1 misreports her preferences under pro�le 1. Hence, the PDAmechanism

does not induce truth telling.

Lemma 1. No child born in period �1 can pro�tably manipulate the PDA mechanism. In
addition, if a child i born in period t � 0 can successfully manipulate the PDA mechanism
then the following must be true:

(�̂DAti+1(i); �̂
DA
ti+1
(i)) �i|{z}

1

(�DAti+1(i); �
DA
ti+1
(i)) �i|{z}

2

(�DAti (i); �
DA
ti
(i)) �i|{z}

3

(�̂DAti (i); �̂
DA
ti
(i)) (1)

and

(�DAti (i); �̂
DA
ti+1
(i)) �i|{z}

4

(�DAti (i); �
DA
ti+1
(i)):

Proof. See Appendix C.

This lemma shows that to manipulate the PDA mechanism successfully one will have to

accept a worse �rst period school in order to improve her second period allocation. This

is indeed true even in the Danish priority system in which IPA is not satis�ed. However,

there is a very important di¤erence in terms of the information required for manipulation.

But before discussing this let us present an example of a system with the Danish priority

structure in which truth telling is not an equilibrium.

Example 1 (TT not an equilibrium). Consider the following example: there are 2 schools
fs1; s2g and each school has a capacity of one child. Suppose I�1 = fi�1g, I0 = fi0g,
I1 = fi1g and I� = ; for all � � 2. All children�s top choice is s1, but worst choice is h.

Each child�s preferences are separable but satis�es the following condition

(h; s1) � (s2; s2):

In addition suppose that

xsi�1 > x
s
i1
> xsi0

for each s = s1; s2. Here we assume that the priority system is Danish.

If everyone reports truthfully, child i0�s allocation is (s2; s2) under the PDA mechanism.

Instead, suppose that i0 reports that her �rst choice is s1, but second choice is h. In this
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case, child i0 obtains (h; s1) under the PDA mechanism. Hence, child i0 has an incentive to

manipulate.

The two examples, one in Theorem 1 and Example 1, reveal the di¤erences of successful

manipulation in di¤erent priority systems in terms of required sophistication. In the Danish

system by staying home when a child is young, she jumps ahead of almost everyone in all

schools�priorities. This manipulation is relatively simple as it only involves one action which

is staying home when young which ultimately improves the child�s priority score relative to

others�scores. On the other hand, manipulating the PDA mechanism in systems satisfying

IPA is rather di¢ cult. To see this let us concentrate in the example presented in Theorem

1. When child i1 misreports her preferences, the child (in our case i0) who were matched to

school s in period t+1 under truth telling will still have priority over i1 at school s. In other

words child i1�s priority score at s does not improve at all no matter what she does. This

means child i1�s manipulation must bene�t child i0 so that she never applies to s. This of

course is possible in the example we considered, but the child must be rather sophisticated

to see through all the possible e¤ects of her manipulation.

4 Daycare Assignment with a Continuum of Agents

In this part we assume that the set of children born in period t, �It = t �WS � [0; 1)n, is
a continuum mass of students. We assume that �It is common for each t � �1. Let �� be
a (probability) measure on �It where t = �1; � � � ;1. Notice that we are assuming that the
set of players born in each period is identical and the distribution of the new born children

is identical in each period.8 Let �r be the vector of capacities. A continuum economy is
�F = (��; �r).

Assumption 4 (Strict Priorities). For any s 2 S, the measure of the children who has

the same priority at this school is 0, i.e., �� (fi : ti = t&xsi = eg) = 0 for any t � �1 and
e 2 [0; 1).

Assumption 5 (Market Thickness). The probability measure �� has a full support, i.e., for
any t � �1, preference pro�le �2 WS and any x� x0 � 1,

��(fi : ti = t& �i=� &x � xi � x0g) > 0:

The assumption above means that the market is thick in the sense that the type space

is su¢ ciently rich.
8Relaxing this assumption does not a¤ect the main results of the paper but the notations will be consid-

erably more complicated.
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De�nition 5 (Matching). A period t matching ��t is a function ��t : �It[ �It�1[ �S ! �It[ �It�1[ �S
such that

1. For all i 2 �It�1 [ �It, ��t(i) 2 �S

2. For all s 2 �S, ��
�
�It�1 \ ��t(s)

�
+ ��

�
�It \ ��t(s)

�
� �rs and ��t(s) � �It�1 [ �It [ ;

3. For all i 2 �It�1 [ �It, i 2 ��t(s) i¤ s = ��t(i).

4. The period t matching is right continuous, i.e., for any sequence of children ik = (� ;�
; xk) where � = t� 1; t converging to i = (� ;�; x), we can �nd some large K such that

��t(i
k) = ��t(i) for all k > K.

A matching �� is a collection of period matchings: �� = (���1; ��0; � � � ; ��t; � � � ).

As in the small economy case, we assume that in period -1 everyone stays home. We use

the following notations: �� (��t(s)) � ��
�
�It�1 \ ��t(s)

�
+��
�
�It \ ��t(s)

�
and ��(i) �

�
��ti(i); ��ti+1(i)

�
.

Periodwise Deferred Acceptance Mechanism

The periodwise deferred acceptance (PDA) runs starting period 0 as period �1 matching
is �xed. In period 0 the school age children report their isolated preferences based on the

previous period�s matching which is �xed. Now the period 0 matching is found by the

following algorithm in maybe in�nite rounds.

Round 1: Each child proposes to her �rst choice according to her isolated preferences. Each

school tentatively assigns its spots to the proposers according to its priority ranking. Specif-

ically, if the measure of proposers to school s is greater than its capacity �rs, then it rejects

the proposers who has a priority score Xs
i (��

DA
�1 ) strictly below the minimum threshold �p1s0

at which the measure of the proposers above this threshold is equal to the school�s capacity

�rs. Let �p10 = (�p
1s
t )s2S.

In general, at:

Round k: Each child who was rejected in the previous round proposes to her next choice

according to her isolated preferences. Each school considers the pool of children who it had

been holding plus the current proposers. Then it tentatively assigns its spots to this pool of

children according to its priority ranking. Speci�cally, if the measure of proposers to school s

is greater than its capacity �rs, then it rejects the proposers who has a priority score Xs
i (��

DA
�1 )

strictly below the minimum threshold �pks0 at which the measure of the proposers above this

threshold is equal to the school�s capacity �rs. Let �pk0 = (�p
ks
0 )s2S.

12



The algorithm terminates when no proposal is rejected and each child is assigned her �nal

tentative assignment. Let �p0 = (limk!1 �p
ks
0 )s2S.

In period 1, the schools�priorities scores are updated based on the period 0 PDA match-

ing. In addition, all the school age children in this period report their isolated preferences

based on the period 0 PDA matching. Now using the algorithm described above, we �nd

the period 1 PDA. Let �p1 be the threshold vector corresponding to period 1 PDA matching.

In each period t � 2 we can run the above algorithm recursively based on the preceding

period�s PDA matching. Let �pt be the threshold vector corresponding to period t PDA

matching. Also let �p = (�pt)1t=0.

The PDA mechanism yields a unique matching in each economy. We will use the notation

��DA for the PDA matching.

4.1 Truth Telling in Continuum Economies

Now we consider the continuum economies and show that when the PDA mechanism is used

no player has an incentive to misrepresent her preferences as long as the others report their

preferences truthfully.

Theorem 2 (TT Equilibrium). For any continuum economy, no player has an incentive to

misreport her preferences in the PDA mechanism when every other child reports her prefer-

ences truthfully.

Proof. Suppose that player i can successfully manipulate the PDA mechanism in some con-

tinuum economy �F . Let player i misreport her preferences as �0i 6=�i. Let the economy
which results from i�s misreporting be �F . Let ��DA and ��DA be the PDA matchings in �F

and �F , respectively. Let the threshold scores corresponding to the ��DA and ��DA be �p and

�p. Since the two economies di¤er in only player i�s preferences and given that the measure

of each player is 0, we have that �p = �p.

In a similar way to Lemma 1, we obtain that

(��DAti (i); ��
DA
ti+1
(i)) �i (��DAti (i); ��

DA
ti+1
(i)):

The above two relation means that �psti+1 � x
s
i < �p

s
ti+1

which is a contradiction.

In the theorem above, we assumed that the priorities of the schools satisfy the IPA

condition. Now we consider the Danish priority scoring system.

13



Theorem 3 (Manipulation under Danish Scoring System). If the priority scoring system is

Danish, then the PDA mechanism is manipulable even in continuum economies.

Proof. Consider an economy in which the threshold score at some school s corresponding to

the PDA matching is �p with �pst > 0, �p
s
t+1 > 0 and t � 0. Consider a preference type �o2 WS

under which (s; s) is the the most preferred bundle, and (h; s) �o (s0; s00) for all s0 6= s and
s00 6= s. Now consider any child i with �i=�o, ti = t and xi < minf�pst ; �pst+1g. Clearly, child
i does not attend s by reporting her preferences truthfully. However, if she reports s as her

�rst choice and h as her second choice, then she will stay home when she is one but attends

s when she is 2. This means that child i has a pro�table manipulation. In addition, thanks

to Assumption 5, the measure of the children who has a pro�table manipulation is strictly

positive.

Example 2 (Boston Pre-School System). To be included...

5 Large Markets and Convergence

Consider a �nite economy E = (I; r). We now de�ne the measure for each �nite economy

E based on its empirical distribution. Speci�cally, the measure of each player i is ~�(fig) =
1=jI�1j. On the other hand, let the capacities of the schools be ~r = r=jI�1j. Let ~F = (~�; ~r)
be the economy corresponding to the �nite economy E.

De�nition 6. A sequence of �nite economies Ek converges to a continuum economy �F

if the sequence of economies ~F k = (~�k; ~rk) corresponding to Ek satis�es the following two

conditions:

1. ~�k converges to �� in weak* topology

2. ~rk converges to �r in supremum norm.

Here observe that if Ek converges to �F , then the ratio of the size of children born in any

period t to the size of the children born in t� 1 converges to 1.
Let ��DA and �DA be the PDA matchings of a continuum economy F and of a �nite

economy E. The period t distance between ��DA and �DA are as follows:

dt(�
DA; ��DA) =k pt � �pt k1 :

Let d(�DA; ��DA) =
�
dt(�

DA; ��DA)
�1
t=�1.

14



De�nition 7. A sequence of PDA matchings �DAk converges to �� if

lim
k!1

dt(�
DAk; ��DA) = 0 for all t � 0:

Proposition 1. If a sequence of �nite economies Ek converge to a continuum economy �F ,

then the sequence of PDA matchings �k converges to ��DA.

Proof. See Appendix C.

Let Lt be the set of the children born in period t who bene�ts by manipulating the PDA

mechanism while the others report their preferences truthfully.

Theorem 4. If a sequence of �nite economies Ek converges to a continuum economy �F ,

then jL
k
t j
jIkt j ! 0 for each t � 0.

Proof. See Appendix C.

As a last remark, we note that a version of theorem 3 also holds for large, �nite, markets.

That is, if the priority scoring system is Danish, then the PDA is manipulable even as the

market becomes large.
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Appendix A: Static Stability in Small Economies

To prove Proposition 1 we need some new de�nitions and results which we include in Ap-

pendices A and B. The proof of Proposition 1 is in Appendix C.

Fix a �nite economy E = (I; r) and a period t� 1 matching �t�1 of this economy. Now
let us construct a new period t �nite economy ~Et(�t�1) based on our original economy and

�t�1. In this new economy the set of children is ~It = It [ It�1 and each child i is de�ned by
a pair (Pi(�t�1); Xi(�t�1)). Let Q be the all possible rankings of �S.

In this new economy, observe that for any two players i and j their priorities cannot

satisfy the following conditions: Xs
i (�t�1) = X

s
j (�t�1) < 1 for any s.

De�nition 8 (Static Stability). Period t matching �t is statically stable in economy ~E(�t�1)
if there exists no school-child pair (s; i) such that

1. sPi(�t�1)�t(i);

2. j�t(s)j < rs or/and Xs
i (�t�1) > X

s
j (�t�1) for some j 2 �t(s)

From Gale and Shapley (1962) each period t � 0 PDA matching �DAt is statically stable

in economy ~E(�DAt�1).
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Appendix B: Static Stability in Continuum Economies

Let us �x an economy (��; �r). Fix any period t � 0 and a period t�1 matching ��t�1. Now let
us construct a new period t continuum economy F̂ (�t�1) = (�̂; r̂ = �r) based on our original

economy and ��t�1. In this new economy the set of children is Ît = �It[ �It�1 and each child i is
de�ned by a pair (Pi(��t�1); Xi(��t�1)). Let Q be the all possible rankings of �S. In addition,

for each Q let It�1(Q; ��t�1) = fi 2 It�1 : Pi(��t�1) = Qg. Similarly, de�ne It(Q; ��DAt�1). Now
Ît is distributed on Q� [0; 1]n according to a measure �̂ where

�̂
�
fi 2 Ît : Pi(��t�1) = Q&x � Xi(xi; ��t�1) � x0g

�
= ��

�
fi 2 It�1(Q; ��t�1) : x � Xi(xi; ��t�1) � x0g

�
+ ��

�
fi 2 It(Q; ��t�1) : x � Xi(xi; ��t�1) � x0g

�
for all x; x0 2 [0; 1]n where x� x0.

Now observe that �̂ has a full support because the second term in the equation above is

always positive for all x; x0 2 [0; 1]n where x� x0. In addition, �(fi 2 Ît : Xs
i (��t�1) = xg) =

0 for all x < 1 and s 2 S.

De�nition 9. Period t matching ��t is statically stable in economy F̂ (��t�1) if there exists no
school-child pair (s; i) such that

1. sPi(��t�1)��t(i);

2. �̂(�t(s)) < �r
s or/and Xs

i (��t�1) > X
s
j (��t�1) for some j 2 ��t(s)

Lemma 2. For any economy F̂ (�t�1), there exists a unique statically stable matching.

Proof. We already pointed out that �̂ has a full support and �(fi 2 Ît : Xs
i (��t�1) = xg) = 0

for all x < 1 and s 2 S. Therefore, all the requirements for Theorem 1 of ? is satis�ed,

hence F̂ has a unique statically stable matching.

Lemma 3. For any economy F̂ (�DAt�1), ��
DA
t is a unique statically stable matching.

Proof. This is a direct consequence of Lemma 3 and Proposition A1 of ?.

Appendix C: Proofs

Proof of Proposition 1. Take any sequence of DA matchings �DAk and the corresponding

sequence of threshold scores pk. For this proof we will use an induction argument. Assume

that for all � = 0; � � � ; t� 1, pk� !k!1 �p� . Now we show pkt !k!1 �pt.
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At period t, consider F̂ (��DAt�1) and ~E
k(�t�1). Now based on ~E

k(�t�1) let us de�ne economy
~F (�t�1) = (~�; ~r) where the measure ~� is a measure satisfying ~�(fig) = 1=jI�1j, and ~r =
r=jI�1j. Because �kt�1 !k!1 �DAt�1, any sequence p

k
t�1 converges to �pt�1. Consequently, the

sequence of measures ~�kt must converge to �̂t in the weak* sense. Then Theorems 2(ii) and

2(iii) of ? yield that pkt ! �pt. This completes the proof.

Proof of Lemma 1. First let us show that any child born in period �1 cannot manipulate the
PDA mechanism pro�tably. To see this, recall that these children�s matching in period �1
is exogenously determined and to determine the period 0 matchings, the PDA mechanism

uses the isolated preferences. In addition, because the DA mechanism is strategy proof in

static settings, by misreporting no child born in period -1 improves in terms of her isolated

preferences.

Relation 3 in 1 follows directly from the fact that the PDA mechanism is strategy-

proof in terms of isolated preferences. Now observe that �DA(i) �i (�DAti (i); �
DA
ti
(i)) be-

cause child i has the highest priority at school �DAti (i) in period ti + 1. This and As-

sumption 1 yields Relation 2 in 1. Now we show relation 4. First observe that Rela-

tion 3 and �DA(i) �i (�DAti (i); �
DA
ti
(i)) yields that �DA(i) �i (�̂DAti (i); �̂

DA
ti
(i)). This re-

lation implies that �̂DAti (i) 6= �̂DAti+1(i) because i successfully manipulates the PDA mech-

anism. Also �DAti (i) 6= �̂DAti+1(i). Otherwise, Assumption 1 and Relation 3 imply that

(�DAti (i); �
DA
ti
(i)) �i �̂DA(i) which contradicts with i successfully manipulating the PDA

mechanism. Furthermore, �DAti+1(i) 6= �̂DAti+1(i). Otherwise, Assumption 1 and Relation 3

imply that �DA(i) �i �̂DA(i) which contradicts with i successfully manipulating the PDA
mechanism. Now Assumption 1, �̂DAti (i) 6= �̂

DA
ti+1
(i) and Relation 3 imply that

(�DAti (i); �̂
DA
ti+1
(i)) �i (�̂DAti (i); �̂

DA
ti+1
(i)):

This proves relation 4 because �̂DA(i) �i �DA(i).
Now we show relation 1. On contrary assume (�DAti+1(i); �

DA
ti+1
(i)) �i (�̂DAti+1(i); �̂

DA
ti+1
(i)).

Then this, �DAti (i) 6= �̂
DA
ti+1
(i), and Assumption 1 give

(�DAti (i); �
DA
ti+1
(i)) �i (�DAti (i); �̂

DA
ti+1
(i)):

Combining the last two relations we reach a contradiction with �̂DA(i) �i �DA(i). Hence,
relation 1 is proved.

Proof of Theorem 4. Suppose that player i in �nite economy E can manipulate the PDA

mechanism. Let player i�s matchings under truthful reporting and manipulating be �DA(i)
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and �̂DA(i), respectively. From Lemma 1 we know that

(�DAti (i); �̂
DA
ti+1
(i)) �i (�DAti (i); �

DA
ti+1
(i)):

For notational simplicity let �̂DAti+1(i) = s. Also let p and p̂ be the threshold scores corre-

sponding to P (�DAti�1) and P (�̂
DA
ti�1), respectively. Consequently,

p̂sti+1 � x
s
i < p

s
ti+1
:

In other words, if a child i can manipulate the PDA mechanism then there must exist a

school s 2 S such that the inequality above is satis�ed. Therefore, to prove the theorem it

su¢ ces to show that at each t � 1, s and � > 0, there exists high enough �k such that for all
k � �k, there exists no child with ti = t� 1, jxsi � �pst j � � and p̂ksti+1 � x

s
i < p

ks
ti+1
.

Suppose that the statement above is false. This means that for some t � 1, s, � > 0

and any �k, there exists k � �k and i with ti = t � 1, jxsi � �pst j � � and p̂kst � xsi < pkst .

In other words, we can choose a subsequence of economies Ekj , such that in each economy

in this sequence, there exists player ikj who is born in period t � 1, jxs
ikj
� �pst j � � and

p̂
kjs
t � xs

ikj
< p

kjs
t . Clearly, Ekj converges to �F in weak* sense. This means that pkjst must

converge to �pst . Now consider the sequence of �nite economies Ê
kj which di¤ers from Ekj

only in that player ikj�s preference type is the one she reports in her manipulation. Because

in each of these economies only one player�s preference type is changed, Êkj converges to �F

in weak* sense. This means that p̂kjst must converge to �pst . Recall that we already showed

that pkjst converges to �pst . This means that as kj increases, x
s

ikj
must be arbitrarily close to

�pst because p̂
kjs
t � xs

ikj
< p

kjs
t . Therefore, for a high enough kj it cannot be jxsikj � �p

s
t j � �

which is a contradiction.

This completes the proof as �� (fi : ti = t&xsi = eg) = 0 for any t and e 2 [0; 1).
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