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Abstract

Promoting diversity in schools has recently emerged as an important policy goal.

Typically school choice programs take into account student preferences and allocate

scarce schools on the basis of priorities, using stability as the solution concept. Therefore

a notion of prioritizing diversity is essential. We introduce a rich class of priorities which

capture intuitive notions of diversity. Substitutable priorities with ties not only ensure

existence of stable assignments, but also allow students of same types to be treated

equally. Moreover we describe an algorithm which finds an optimal stable assignment.

1 Introduction

School choice has been a fruitful policy application of matching theory. In many school

districts, school assignment takes into account student preferences. Overdemanded schools

are allocated on the basis of priorities, e.g., those who live within the walk-zone of the school

have higher priority for that school. Since Abdulkadiroğlu and Sönmez (2003), a growing

literature has incorporated such concerns into tractable models with great success not only

in theory, but also in applications. On the other hand, the mechanism design approach
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to school choice has paid relatively little attention to composition of school populations,

while promoting diversity is becoming increasingly topical as a policy issue. For example, in

December 2011, US Department of Justice announced1 that

“the US Departments of Justice and Education released two new guidance docu-

ments – one for school districts2 and one for colleges and universities – detailing

the flexibility that the Supreme Court has provided to educational institutions to

promote diversity and, in the case of elementary and secondary schools, reduce

racial isolation among students within the confines of the law.

“The guidance makes clear that educators may permissibly consider the race of

students in carefully constructed plans to promote diversity or, in K-12 education,

to reduce racial isolation. It recognizes the learning benefits to students when

campuses and schools include students of diverse backgrounds.”

This perspective raises various questions for both policy makers and economists. At a

practical level, definition of diversity, what it means to promote it, and the policies to achieve

related goals come with numerous ethical and legal challenges. From a theoretical perspective,

no obvious formalization of diversity stands out. Vast majority of the school choice literature

relies on priorities which rank individual students. For example among students applying to

the same school, those who have a sibling already registered at that school would typically have

a priority over those who do not have a sibling at that school. However, unlike comparisons

of individuals based on whether one has a sibling or not, or whether she lives within the walk-

zone or not, diversity is a property of groups. Usually it is not possible to extend rankings

over individuals to orders over sets to have an intuitive comparison in terms of diversity. This

necessitates an approach to priorities distinctly more general than what most of the school

choice literature has used.

We introduce a class of choice rules, substitutable priorities with ties, to guide which

students a school should admit from any given set of applicants. These choice rules generalize

substitutability to allow indifferences (ties) so that they capture various natural notions of

diversity while treating same type students symmetrically. Our interpretation of respecting

priorities is, as is commonly done in theory and practice, via stability with respect to school

1See http://www.justice.gov/opa/pr/2011/December/11-ag-1569.html – accessed on 10 October 2012.
2“Guidance on the voluntary use of race to achieve diversity and avoid racial isolation in elementary and

secondary schools.” See http://www.ed.gov/news/press-releases/new-guidance-supports-voluntary-efforts-

promote-diversity-and-reduce-racial-isol – accessed on 10 October 2012.
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priorities and student preferences. We show that stable assignments exist, and we describe

a modified deferred acceptance algorithm (in the spirit of Gale and Shapley, 1962; Kelso and

Crawford, 1982; and Hatfield and Milgrom, 2005) to find one. Then to find an optimal

assignment, we describe stable improvement algorithm in the spirit of Erdil and Ergin (2008).

While our notions and constructions are reminiscent of these earlier approaches, we note that

these earlier results are not readily generalizable to our environment.

In our main application, we compare sets with respect to their distance from what a

policy maker might consider an ideal composition or distribution of types at a school. That

is, given an exogenously fixed distribution of types, we define measures of distance between

an arbitrary set and this target distribution. Between two competing sets, the one that is

closer to that target distribution is deemed more diverse. Consider, for example, a school

with two available seats, and six applicants consisting of two Asian, two black, and two white

students. Prioritizing diversity, but otherwise treating everyone equally implies any mixed

pair of students should be of high priority, whereas any other pair would be of low priority.

In other words, sets can be compared according to their distance from the target distribution

(1, 1, 1). As we explain in Section 2 such a priority order does not fit into any model previously

studied in the literature,3 but it is substitutable with ties. Going further, in Section 5, we show

how our model captures a large class of choice rules which prioritize diversity in a natural

way.

Ours is not the first study in designing school choice mechanisms with a view towards

diversity. The literature discusses a number of affirmative action policies, such as controlled

school choice or majority quotas. Some interpretations of promoting diversity might lead to

inefficiencies without contributing towards diversity. For example, insisting on a rigid notion

of diversity and ruling out all assignments that violate such a notion might lead to wasteful

assignments as in Abdulkadiroglu (2005). Or as Kojima (2010) points out, using majority

quotas (upper limits on how many non-minority students are allocated seats) might have the

opposite effect to policy maker’s intentions: even the minority students, who are meant to

benefit from this affirmative action policy, might end up worse off compared with an allocation

mechanism which relaxes quota requirements. These issues are alleviated by instead using

minority quotas as in Hafalir, Yenmez, Yildirim (2012), Ehlers et al. (2012), or slot specific

priorities as in Kominers and Sönmez (2012). Echenique and Yenmez (2013) axiomatize an

3Within the framework of Section 5, this example would correspond to having non-integer target distribu-

tion (2/3, 2/3, 2/3), which is equivalent to allowing the total number of seats to be different from the sum of

quotas, and setting the target distribution as (1, 1, 1), where the number of seats is two.
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approach very similar to what we have called prioritizing a target distribution. They show

that priority rules that satisfy a number of appealing properties have to be of a particular

form which involves ranking sets in terms of their distance to an ideal distribution of types.

2 Going beyond responsive priorities

The initial mechanism design approach to school choice (Abdulkadiroğlu and Sönmez, 2003)

employed a matching model similar to Gale and Shapley’s (1962) college admissions model.

Each school is endowed with a certain number of seats and an exogenous priority order over

the set of students. For a matching of students to schools to be stable, a student i must

not be left envying another student j at school x, if i has higher priority for x than j. If

these priorities can be captured by strict rankings over students, interpreting such rankings as

schools’ preferences brings us back to the college admissions model. Later models incorporate

ties in priority orders, and begin with a weak order (i.e., a complete, transitive binary relation)

on the set of students. Though the priorities are orders on individual students, effectively they

act as responsive choice rules over the sets of students. Responsiveness is a widely studied

(see, e.g., Roth and Sotomayor, 1990) property of rankings over sets. A ranking over sets

is responsive to a preference ranking over individuals if for any two sets that differ in only

one student, the set containing the student with [weakly] higher priority is ranked [weakly]

higher.4 When schools’ rankings over sets of students are responsive, stability is equivalent

to pairwise stability.

It is not hard to see that the priority order in our example in the introduction is not

responsive to any order on students. Recall that there are six students in N = A ∪ B ∪W ,

where A = {a1, a2}, B = {b1, b2}, and W = {w1, w2}. Apart from a diversity policy, they are

to be “treated equally”:

{wi, bj} ∼ {wi, ak} ∼ {bj, ak} � {w1, w2} ∼ {b1, b2} ∼ {a1, a2} � · · · ,

where i, j, k ∈ {1, 2}. If � were responsive to an order �� on {w1, w2, b1, b2, a1, a2}, we would

have

{w1, b1} � {w1, w2} =⇒ b1 �� w2

and

{w2, b2} � {b1, b2} =⇒ w2 �� b1,

4Formally, a ranking � over the sets of students is said to be responsive to a ranking �� over the set of

students if whenever i �� j, we have {i} ∪ S � {j} ∪ S for any S.
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hence a contradiction.

It is worth noting that the priority structure above cannot be mimicked via treating each

school as a hypothetical combination of sub-schools each of prioritizing different types. Such

an approach, which has been discussed as type specific quotas in the literature, would require

each sub-school to rank students of a particular ethnicity over others. In the above example,

in whatever way the two sub-schools with one seat each rank students, it will be impossible

to treat students equally while prioritizing diversity.

Kelso and Crawford (1983) introduced a condition, substitutability, on set rankings which

is significantly more permissive than responsiveness. In this much wider class of priorities,

a generalized version of Gale and Shapley’s Deferred Acceptance algorithm finds a stable

matching, and many other attractive properties carry over from the responsive domain to

substitutable domain. In order to capture a notion of promoting diversity, we will go in that

same direction. But we will extend even more to also incorporate equal treatment, which

necessitates set rankings to allow non-trivial indifferences, or ties. Such a generalization turns

out to be more than straightforward, and requires us to reformulate the original definitions

carefully, and develop novel methods to derive our results.

3 Preliminaries

Let N be a set of students, and X be a set of schools. There are qx seats at school x, for x ∈ X.

Each student can receive at most one seat, and the allocation has to respect exogenously given

priorities, a notion formalized below.

Each school x is endowed with a priority rule that determines which subset of applying

students receive a place at that school when there are more applicants than the seats available.

Formally, a priority rule is a choice correspondence which associates to each subset S of the

students the collection of subsets of S which may be the set of students assigned to x. That is,

Cx : 2N → 22
N
such that S � ⊆ S for all S � ∈ Cx(S). We impose a simple consistency property

on the choice rules we will study.5 Namely, (1) if a set A is chosen instead of another set B

when they are both available in one instance, then the set B should not be chosen whenever

A is available; (2) if both A and B are chosen in one instance, then they should both be

5This property will rule out some notions of diversity, where the measurement makes a, say proportional,

reference to the applicant pool, as opposed to a fixed universal pool. It is reminiscent of independence of

irrelevant alternatives or the weak axiom of revealed preference. Whether a set is more diverse than another

should not depend on which subset of applicants we focus on.
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chosen, or both be rejected whenever they are both available. Formally,

(1) If there exists S such that A ∪ B ⊆ S with A ∈ Cx(S) and B /∈ Cx(S), then whenever

A ∪B ⊆ S �, we have B /∈ Cx(S �).

(2) If there exists S such that A,B ∈ Cx(S), then whenever A∪B ⊆ S �, we have A ∈ Cx(S �)

if and only if B ∈ Cx(S �).

Given a choice rule Cx with the above consistency property, we can define the associated

relations �x and ∼x as

If A ∈ Cx(S) and B /∈ Cx(S) for some S, then A �x B,

if A ∈ Cx(S) and B ∈ Cx(S) for some S, then A ∼x B.

We write A �x B if A �x B or A ∼x B.6 Clearly the relations �x, ∼x and �x depend on Cx,
but we will suppress such dependence for notational convenience. We will call �x a priority

order.7 A priority structure C is a vector of priority rules (Cx)x∈X .
If S � ∈ Cx(S), then we refer to S � as a chosen set from among the applicants S. Given

Cx and a set S, we define the set of definitely chosen students as

DCx(S) =
�

S�∈Cx(S)

S � = {i ∈ S | i ∈ S � for all S � ∈ Cx(S)}.

Note that DCx(S) can be empty.

Now we are ready to introduce our notion of substitutability with ties.

Definition 1 A priority structure is substitutable (with ties) if for each x ∈ X, and for

each S, T ⊆ N with S ⊆ T , the following conditions hold

(a) for each T � ∈ Cx(T ), we have T � ∩ S ⊆ S � for some S � ∈ Cx(S), and

(b) for each S � ∈ Cx(S), we have T � ∩ S ⊆ S � for some T � ∈ Cx(T ).8

6We do not require �x nor �x to be transitive nor complete.
7Note that Cx(S) = {S� ⊆ S | S� �x S�� for all S�� ⊆ S}.
8It is helpful to define the rejection correspondence Rx, which associates to each S ⊆ N , the family of

subsets of S which can be rejected from among S. That is,

Rx(S) = {S�� ⊆ S | S�� = S\S� for some S� ∈ Cx(S)}.

As shown in Remark 2 in the Appendix, condition (b) of Definition 1 can be rewritten as
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(strict substitutable)

(strict responsive)
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Substitutable (our class)

strict priorities weak priorities

Figure 1: Our class is strictly larger than both strict substitutable priorities and responsive priorities

with ties.

This definition covers various environments studied in the literature. For example, re-

sponsive preferences over sets of doctors (Roth, 1984), the school choice formulation of Ab-

dulkadiroğlu and Sönmez (2003), and the school priorities with ties (e.g., Ehlers, 2007) are

all special cases.9 One contribution of this paper is that our generalization goes beyond,

and covers natural priority structures which are not captured by any of the aforementioned

models. For instance, recall the priority order specified in our motivating example

{a, b} ∼ {a�, w} ∼ {b�, w�} � {a, a�} ∼ {b, b�} ∼ {w,w�}.

(b’) for each S�� ∈ Rx(S), we have S�� ⊆ T �� for some T �� ∈ Rx(T ).

It is intuitive to refer to conditions (a) and (b) as the monotonicity of the acceptance and rejection correspon-

dences, respectively. Note that if Cx is a function for each x ∈ X, then conditions (a) and (b) in Definition 1

are equivalent.
9Our definition is easily extended to allow different contracts between a student and a school. Each

school is endowed with a priority rule (a choice correspondence over contracts) which satisfies the appropriate

consistency properties, and we get a generalization of Kelso and Crawford (1982) and Hatfield and Milgrom

(2005). Kelso and Crawford (1982) use formulation (a), whereas Hatfield and Milgrom (2005) use formulation

(b’). While these conditions are equivalent for the settings of those papers, in our generalized environment

they do not imply each other any more, as shown in Remark 3.
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This order is not responsive to any ranking (strict or weak) over the set of students. Nor

is it strict substitutable as it involves ties. But it is substitutable in the way we defined, and

therefore satisfies the attractive properties that will follow from substitutability. Moreover,

in Section 5 we will see that this particular example is a specific instance of a large class of

priority orders which satisfy our substitutability notion.

We define an assignment µ to be a function µ : N → X ∪N such that

• ∀i ∈ N, µ(i) ∈ X ∪ {i}, and

• ∀x ∈ X, |µ−1(x)| ≤ qx.

Each student i has a strict preference ranking Ri over X ∪ {i}, where receiving i is inter-

preted as getting one’s outside option. Pi denotes the strict part of Ri. Given a preference

profile R = (Ri)i∈N , we have a Pareto domination relation over all possible assignments.

Given students’ preferences R, an assignment µ respects priorities C, if

• for each i ∈ N , µ(i)Rii, and

• for each x ∈ X, for every S such that µ−1(x) ⊆ S ⊆ {i ∈ N | xRiµ(i)}, we have

µ−1(x) ∈ Cx(S).

The definition captures the idea that no subset of students who weakly prefer x to their

assigned school has higher priority than those students currently assigned to x.10

An assignment is called pairwise stable if it is not blocked by an individual student, or

an individual school, or a student-school pair. That is, (1) each student i prefers her match

to being unassigned; (2) each school prefers not to get rid of some of the assigned students;

and (3) there is no student-school pair who are not matched, but would rather be matched.

Formally,

(1) µ(i)Rii for all i ∈ N , i.e., µ is individually rational,

(2) µ−1(x) ∈ Cx(µ−1(x)) for all x ∈ X,

10One can interpret the priority rules as schools’ preferences, but we should note that stability does not

correspond to either the core or the weak core. In order to see this, let there be a single school x, and three

students 1, 2, 3. Let Cx({1, 2, 3}) = {{1, 2}, {1, 3}}, and x be acceptable to all the students. The matching

(1x, 22) is not strongly blocked by any coalition, and therefore is in the weak core, but it is clearly not stable.

Secondly (1x, 2x) is stable, but is not in the core, because the coalition {x, 1, 3} can block to form (1x, 3x).

This is in contrast with the class of strict substitutable priorities for which stability is equivalent to being in

the core.
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(3) there is no (i, x) ∈ N ×X such that xPiµ(i) and i ∈ DCx(µ−1(x) ∪ {i}).

In Gale and Shapley’s (1962) original formulation the property of respecting priorities was

called stability. The term is perhaps more appropriate when schools’ priorities are interpreted

as their preferences. Nevertheless, staying faithful to the literature, from now on, we will

call an assignment which respects priorities a stable assignment. Stability implies pairwise

stability.11 The following proposition says that the converse holds for substitutable priority

structures.

Proposition 1 Let C be a substitutable priority structure. Then an assignment is pairwise

stable if and only if it respects priorities.

Below, we show that a natural extension of Gale and Shapley’s Deferred Acceptance Al-

gorithm finds an assignment which respects priorities if the priority structure is substitutable.

Modified Deferred Acceptance Algorithm (MDA)

Round 1: All students apply to their favorite schools. For each school x, if A1
x is

the set of applicants, an element S1
x in Cx(A1

x) is declared temporary winners, and

the rest of the applicants, denoted Z1
x = A1

x\S1
x are rejected.

...

Round t: Those who were rejected in round t − 1, apply to their next favorite

school. For each school x, if At
x is the set of all students who have applied to x so

far, a set of temporary winners St
x ∈ Cx(At

x) is chosen such that Zt−1
x ⊆ At

x\St
x.

When every student is either matched with a school or has been rejected by all

schools in his list, the algorithm ends.

Proposition 2 Given a substitutable priority structure C, the Modified Deferred Acceptance

Algorithm returns a stable assignment.

11Property (1) is part of the definition of respecting priorities. Given that for each x ∈ X, we have µ−1(x) ∈
Cx({i | xRiµ(i)}), it remains to verify (2) and (3). Suppose (2) did not hold. Then µ−1(x) /∈ Cx(µ−1(x)).

Let A ∈ Cx(µ−1(x)). Since A ∪ µ−1(x) ⊆ µ−1(x) ⊆ {i | xRiµ(i)}, by consistency of priority rules, we

have µ−1(x) /∈ Cx({i | xRiµ(i)}), yielding a contradiction with µ respecting priorities. If (3) were not to

hold, we would have (j, x) ∈ N × X such that xPjµ(j) and j ∈ DCx(µ−1(x) ∪ {j}). Since j /∈ µ−1(x), we

necessarily have µ−1(x) /∈ Cx(µ−1(x)∪ {j}). Again, by consistency, we must have µ−1(x) /∈ Cx({i | xRiµ(i)}),
contradicting the assumption that µ respects C.
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The above algorithm is a generalization of the student-proposing deferred acceptance

algorithm to an environment which allows school priority rankings over sets of students to be

substitutable with ties. The way the algorithm chooses a set of temporary winners St
x ∈ Cx(At

x)

such that Zt−1
x ⊆ At

x\St
x, relies on condition (b) of substitutability, and ensures that those

students that were rejected by x in a previous round are still rejected.

A priority structure C is acceptant if for each x ∈ X, for each S ⊆ N , and for each

S � ∈ Cx(S) we have |S �| = min{|S|, qx}. This captures the idea that an unused school seat

cannot be denied to any student. If C is an acceptant priority structure, and if µ is an

assignment which respects C, then µ is non-wasteful, i.e., |µ−1(x)| = qx whenever there

exists i ∈ N such that xPiµ(i).

Our environment generalizes that of Ehlers (2007) and Erdil and Ergin (2008). So as in

those papers, the outcome of the modified deferred acceptance algorithm is not necessarily

constrained efficient, and the constrained efficient set is not necessarily a singleton. Given

C, define the constrained efficient correspondence fC, which assigns to each preference

profile R, the set of stable assignments which are not Pareto dominated by another stable

assignment. We say fC is Pareto efficient if every µ ∈ fC(R) is Pareto efficient for every R.

4 Efficiency and constrained efficiency

Let us call a priority structure C efficient if fC is Pareto efficient. Ergin (2002) characterizes

efficient priority structures under the assumption of responsive priorities without ties. Ehlers

and Erdil (2010) give a more general characterization allowing for ties in priority orders.

Below, we will let the priorities be acceptant substitutable with ties, providing the most

general statement in a much larger environment. This characterization result, as the ones

before, confirms that fC is Pareto efficient under very restrictive conditions.

Definition 2 Given a priority structure C, a weak cycle is constituted of distinct i, j, k ∈ N ,

and x, y ∈ X such that there exist Sx, Sy ⊆ N\{i, j, k} with Sx ∩ Sy = ∅ satisfying

(C)

j /∈ DCx(Sx ∪ {i, j})
j ∈ DCx(Sx ∪ {k, j})
k /∈ DCx(Sx ∪ {i, k})
i /∈ DCy(Sy ∪ {k, i})

(S) |Sx| = qx − 1 and |Sy| = qy − 1.
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If C does not have any weak cycle, then it is called strongly acyclic.

Proposition 3 Let C be an acceptant substitutable priority structure. fC is efficient if and

only if C is strongly acyclic.

Ergin’s (2002) characterization of efficient priority structures imposes an acyclicity con-

dition which can be interpreted as schools having “sufficiently similar” priority rankings. It

turns out that in our more general setting, such interpretation is not valid. In fact, schools

can have identical priority rankings, while constrained efficiency is still short of efficiency.

Example 1 In our motivating example, we had two schools x, y, each with two seats, and six

students a, a�, b, b�, w, w� . Both schools had the same priority rule which lead to the following

priority order

{a, b} ∼ {a�, w} ∼ {b�, w�} � {a, a�} ∼ {b, b�} ∼ {w,w�}.

In order to verify that this priority structure has a weak cycle in our sense, we need to check

conditions (S) and (C). Letting Sx = {a�} and Sy = {b�}, we can see that (S) holds. As for

condition (C), note that

Cx({a�, w����
i

, b����
j

}) = {{a�, w}, {a�, b}, {w, b}} ⇒ b /∈ DCx(Sx ∪ {w, b})

Cx({a�, b, a����
k

}) = {{b, a}, {b, a�}} ⇒ b ∈ DCx(Sx ∪ {a, b})

Cx({a�, w, a}) = {{w, a}, {w, a�}} ⇒ a /∈ DCx(Sx ∪ {w, a})
Cy({b�, w, a}) = {{w, b�}, {w, a}, {b�, a}} ⇒ w /∈ DCy(Sy ∪ {a, w}).

Thus, we have a weak cycle, and by Proposition 3, fC is not efficient. The following preference

profile and the assignment explicitly show an instance of such inefficiency:

Ra Ra� Rb Rb� Rw Rw�

x x x y y

y x

µ =

�
a a� b b� w w�

y x b y x w�

�

µ is constrained efficient, but not efficient, because there is only one possible Pareto im-

provement over µ which is achieved by letting a and w swap their schools, but the resulting

assignment would not respect the priority structure C. ♦

In the absence of ties, each priority rule Cx is singleton-valued. We know in that case

that fC is singleton-valued and reached by the deferred acceptance algorithm. On the other
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hand, when there are ties, the constrained efficient correspondence is not necessarily singleton-

valued. Moreover, arbitrarily breaking the ties as we execute the deferred acceptance algo-

rithm may lead to constrained inefficiency. In the case of responsive priorities the stable

improvement cycles algorithm by Erdil and Ergin (2008) reaches a constrained efficient as-

signment. We explore whether such cycles can be used to solve the similar problem when

priorities are acceptant and substitutable.

A special case of our environment is that of responsive priorities with ties. Motivated by

the fact that an arbitrary resolution of ties in implementing the DA algorithm may lead to

an assignment which is not constrained efficient, Erdil and Ergin (2008) explored stability

preserving Pareto improvements. A stable improvement cycle is a cycle of distinct schools

such that for any edge x → y, there is a student ix matched with x, who would like to

be matched with y instead, and is one of the highest y-priority students among those who

would like to move to y. They show that if a stable assignment is not constrained efficient,

then it must admit a stable improvement cycle, and therefore by simply searching for stable

improving cycles and implementing them successively, one can reach a constrained efficient

assignment. When we more from responsive to substitutable priorities, their definition does

not capture all the improvement cycles that preserve stability. That is, it is possible that a

stable matching µ is Pareto dominated by another stable matching ν even though µ does not

admit a stable improvement cycle in their sense.12

Given a stable assignment µ, who could be replacing, without violating stability, j’s po-

sition at µ(j) if j were to disappear? It must be that when such a student � replaces j, the

new set of students must be a chosen set in the face of those who would like to be replacing

j at µ(j). To formalize this idea in general, let Eµ
j stand for the set of students who envy j

at assignment µ:

Eµ
j = {i | µ(j)Piµ(i)}.

Then, the set of students who can replace student j at µ is defined as

Eµ
j = {i ∈ Eµ

j | {i} ∪ µ−1(µ(j))\{j} ∈ Cµ(j)(Eµ
j ∪ µ−1(µ(j))\{j})}

Note that j /∈ Eµ
j , and Eµ

j is not necessarily a singleton.

Given a priority structure C, a preference profile R and a stable assignment µ, a stable

student improving cycle (SSIC) consists of distinct students i0, i1, . . . , in−1, in = i0 such

that i� ∈ Eµ
i�+1

for all � = 0, . . . , n− 1. We denote such a cycle by i0 → i1 → · · · → in−1 → i0.

12See Remark 5 in Appendix B.
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Proposition 4 Given an acceptant and substitutable priority structure C, if a stable assign-

ment does not admit an SSIC then it is constrained efficient.

Without further assumptions on the priorities, the converse does not necessarily hold. That

is, a constrained efficient assignment might admit an SSIC.13 Now we formulate a condition

on the priority structure which ensures that constrained efficiency rules out stable student

improvement cycles. Given an acceptant substitutable priority structure C, define a weak form

of “equal treatment of equals” as follows: A priority structure satisfies equal treatment of

equal students if given {i, j} ∪ S ⊆ T , and {i, j} ∪ S � ⊆ T � such that T ⊆ T �, |S| = qx − 1

and |S �| = qx − 1,

S ∪ {i}, S ∪ {j} ∈ Cx(T ) and S � ∪ {i} ∈ Cx(T �) =⇒ S � ∪ {j} ∈ Cx(T �). (ETE)

Which students are to be treated equally can change from one school to the other. However,

the critical requirement is that if a student can replace another given some set of applicants,

then she could replace the same student given any larger set of applicants.

Proposition 5 Let C be an acceptant and substitutable priority structure which satisfies ETE.

Suppose that the stable assignment µ admits an SSIC, and let the shortest SSIC be

i0 → i1 → · · · → in−1 → i0.

If the assignment ν is obtained by carrying out this cycle, i.e., if

ν(i) =

�
µ(i�+1) if i = i�

µ(i) otherwise
,

then ν is stable.

Corollary 1 Suppose that an acceptant and substitutable priority structure C satisfies ETE.

Then a stable assignment is constrained efficient if and only if it does not admit a stable

student improving cycle.

The above proposition leads to an algorithm which always returns a constrained efficient

assignment. Starting from a stable assignment µ, one needs to construct a graph whose set

of vertices is the set of students. For any pair (i, j) of vertices, there will be an edge from i

to j if and only if i ∈ Eµ
j . If this graph does not have a cycle which preserves stability, then

µ is constrained efficient. Otherwise, we can let the cycle lead to a Pareto improving cyclic

trade which would preserve stability.

13Remark 4 in Appendix B gives such an example.
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Modified Stable Improvement Cycles Algorithm (MSIC)

Step 0:

Run the MDA to obtain an initial matching µ0.

Step t ≥ 1:

(t.a) Given µt−1, let the students stand for the vertices of a directed graph, where

for each pair of students i and j, there is an edge i −→ j if and only if i ∈ Eµt−1

j .

(t.b) If there are any stable student improving cycles in this directed graph, select

a shortest one, and carry out this cycle to obtain µt, and go to step (t + 1.a). If

there is no such cycle, then return µt−1 as the outcome of the algorithm.

This algorithm will return a student optimal stable assignment, but when there are more

than one such assignments, the particular outcome will depend on the selections in running

the MDA in Step 0, and the specification of the cycle search in later steps.

The algorithm ensures a constrained efficient outcome. Whenever the temporary assign-

ment µt is not constrained efficient, we know from Corollary 1 that it must admit an SSIC.

The Floyd-Warshall algorithm14 is a computationally efficient way to find a shortest cycle,

and thanks to Proposition 5, we can carry out this SSIC to reach a stable assignment µt+1

which improves upon µt.

Furthermore, if C is acyclical, then we know from Proposition 3 that any constrained

efficient assignment is Pareto efficient. Thus we have

Corollary 2 If C is acyclical, then the above algorithm is Pareto efficient.

When responsive priorities involve ties, Erdil and Ergin (2008) show that there is no

strategy-proof mechanism which always returns a constrained efficient matching. Since our

environment subsumes theirs, the impossibility result extends to this more general setting. In

particular, however the selections in the above algorithm are made (deterministic or random),

any mechanism which returns a single matching (or a randomization over matchings) will fail

strategy-proofness. Instead of focusing a singleton-valued selection from the set of constrained

efficient matchings, we will then focus on the whole correspondence fC. While there is not a

standard concept of incentive compatibility for social choice correspondences, Jackson (1992)

defines the following notion of strategy-resistance which boils down to strategy-proofness for

14See Cormen, Leiserson, Rivest, and Stein (2001) for an exposition.
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social choice functions: by unilaterally misrepresenting her preferences, no agent can get

a match better than every matching obtained when she is truthful. Formally speaking, a

correspondence F is strategy-resistant if there exists no i, R,R�
i, and no ν ∈ F (R�

i, R−i)

such that ν(i)Piµ(i) for all µ ∈ F (R).

Proposition 6 If C is acceptant and substitutable, then fC is strategy-resistant.

5 Application: a model of prioritizing diversity

Admissions policies often include guidelines or rules to promote diversity.15 An intuitive way

to think about diversity is to take some distribution of types in a population as the ideal or the

target distribution, and compare distributions in terms of their distance from that specified

distribution. We show that our model is able to incorporate a concern for diversity capturing

this intuitive approach. Moreover, other exogenously given priorities can be accommodated

in addition to diversity.

Let there be an exogenous priority ranking over the set of students. Denoting this weak

order by �exo∈ N × N , its associated linear order is denoted by �exo, whereas indifference

is denoted by ∼exo. Let T = {τ1, . . . , τm} be the set of types, and τ : N → T be a function

such that τ(i) indicates student i’s type. For every school x, there are type-specific quotas

kT
x = (kτ1

x , . . . , kτm
x ) such that 1 ≤ kτ

x ≤ qx, and
�

τ k
τ
x = qx. We can interpret kT

x as the target

distribution16 of types at school x. For an acceptant priority order, it is sufficient to specify

rankings over qx-subsets of students. For any qx-subset S, let us define its distance from the

target distribution kT
x as

dkx(S) = d(kT
x , S) =

�

τ∈T

||Sτ |− kτ
x|,

where Sτ denotes {s ∈ S : τ(s) = τ}. While dkx depends on the target distribution kT
x , we

will suppress such dependence in our notation when it leads to no confusion. Note that if

|S| = qx, then dx(S) is even.

15In some cases in order to promote the welfare of an underprivileged or an underrepresented group, one

might set quotas that favor members of such a group. Such policies, sometimes called affirmative action

or controlled school choice, might turn out to be counterproductive as illustrated by Kojima (2012). Some

seemingly natural ways of granting favorable treatment to a specific group might lead to each member of such

a group ending up worse off compared with the assignment which ignores such treatment.
16It is possible to work with target distributions that have non-integer entries, or whose entries add up to

a number larger than the total number of seats available.
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Definition 3 A priority order �x prioritizes diversity (PD) if for every S, S � such that

|S| = |S �| = qx,

dx(S) < dx(S
�) ⇒ S �x S �.

The distance function determines how far a set is from the target distribution of types at

a school. Diversity concerns do not help choose between sets that are equidistant from the

target distribution. If there is an exogenous priority order over students, one can use such

priorities to rank sets that are considered equally diverse in the sense specified by the distance

function:

Definition 4 Given an exogenous priority ranking �exo over the set of students, a priority

order �x is diversity constrained responsive (DCR) to �exo if whenever |T ∪ {s�}| =
|T ∪ {s��}| = qx and dx(T ∪ {s�}) = dx(T ∪ {s��}), we have

T ∪ {s�} �x T ∪ {s��} ⇔ s� �exo s��.

In this formulation, diversity is the leading priority. Other priorities (captured by �exo)

are used to break ties between sets of equal diversity index, i.e., sets that are of equal distance

to the target distribution.

Much of the literature on school choice is on priorities responsive to some exogenous order

over the set of students. For example, other things being equal, a student who lives in the

walk-zone of the school is of higher priority than one that lives outside that walk-zone. We now

give an example, where such priorities can be handled together with concerns for diversity.

Example 2 (Racial Balance & Walk-Zone) Suppose there is a school with three seats

and the following target distribution: (qa, qb, qw) = (1, 1, 1). The exogenous priority order on

the students prioritizes the students w,w�, b who live in the school’s walk-zone:

w ∼exo w� ∼exo b �exo b� ∼exo a.

The following order prioritizes racial diversity, and uses walk-zone priorities as a secondary

criterion:

{a, b, w} ∼ {a, b, w�} �

{a, b�, w} ∼ {a, b, w�} �

{b, w, w�} �

{b, a, w�} ∼ {b, b�, w} ∼ {a, w, w�} �

{a, b, b�} � · · ·
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Again, to our knowledge, this sort of priorities are not captured by any of the models in the

literature. ♦

Proposition 7 Let �exo be a weak order on students. If an acceptant priority rule � prior-

itizes diversity (PD) and is diversity constrained responsive (DCR) to �exo, then it is substi-

tutable.

Therefore, when the school allocation mechanism respects priorities which promote diver-

sity in the sense we formalized above, the MDA always returns a stable assignment. Further-

more, stable assignments which are not optimal within the set of stable assignments can be

improved via trading cycles:

Proposition 8 Given a priority structure which satisfies PD and DCR, a stable assignment

is constrained efficient if and only if it does not admit a stable student improving cycle.

Unlike in Proposition 4, where we deal with substitutable priorities in general, we do not

require the condition ETE for the above proposition to hold.

Remark 1 This formulation brings to mind other possibilities for the distance we might want

to use. Consider, for example, the following distance function:

d̃x(S) = d(qx, S) =
�

τ∈T

||Sτ |− qτx|k.

The proof of Proposition 7 can be modified to show that when k > 1, the above distance

function leads to a substitutable priority rule. On the other hand, if k < 1, this is not

necessarily the case.17 More generally, it is the convexity of the distance function which

would ensure substitutability.

The target composition of types might specify, for each type τ , a range [qτ
x
, q̄τx] of numbers

instead of a single number. Then our formulation would also incorporate the soft bounds

approach introduced by Ehlers, Hafalir, Yenmez and Yildirim (2011). To put it formally,

17In order to see this, let qT = (qa, qb, qc, qd) = (2, 2, 4, 2) be the target distribution of types a, b, c, d. Let

T = {a1, . . . , a4, b1, . . . , b4, d1, . . . d6} and S = T\{d4, d5, d6}. If k = 1/2 in the above distance function, any

T � in C(T ) would consist of two students of type a and b each, and six students of type d. In particular

{d1, d2, d3} ⊂ T � for every T � ∈ C(T ). However, every S� ∈ C(S) consists of four students of type a and b each,

and only two students of type d. So at least one of d1, d2, d3 would be excluded from every chosen set, and

therefore T � ∩ S � S� for any S� ∈ C(S).
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suppose that for each school x and type τ ∈ T , we have quotas q
x
≤ q̄x such that

�
t q

τ
x
≤

qx ≤
�

t q̄
τ
x. Denote the distance between an integer m and an interval [a, b] as δ(m, [a, b]):

δ(m, [a, b]) =






a−m if m < a,

0 if a ≤ m ≤ b,

m− b if b < m.

Then we can set a distance function d̂ as

d̂x(S) = d(qx, S) =
�

τ∈T

(δ(|Sτ |, [qτx, q̄
τ
x]))

k,

for some k ≥ 1. If k = 1 in prioritizing diversity, and if each school has a strict exogenous

priority order of its own, then we get the design proposed by Ehlers, Hafalir, Yenmez and

Yildirim (2011). ♦

6 Conclusion

In this paper, we have developed a general class of substitutable priority rankings which allow

indifferences. Respecting priorities, in this model, means that the assignment is stable with

respect to preferences and the priority structure. Stable assignments exist, and a modified

version of the celebrated deferred acceptance algorithm finds one. The outcome is not nec-

essarily optimal from students’ perspective, and for a reasonable subclass of substitutable

priority rankings, we describe an algorithm that finds an optimal stable assignment. We

show that along with standard priorities like walk-zone or sibling, a seemingly complex but

practical concern for diversity is well captured by our model.

A Appendix: Proofs

Proof of Proposition 1

Denote U = µ−1(x). If µ is pairwise stable, then it must be that for any � with xP�µ(�), we

have U ∈ Cx(U ∪ {�}). Since students’ preferences over schools are strict, we can write this

in a seemingly stronger way: for any � with xR�µ(�), we have U ∈ Cx(U ∪ {�}). We would

like to show that if S ⊆ N such that xRiµ(i) for all i ∈ S, then U ∈ Cx(U ∪ S). In order to
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conclude via induction on |S|, it is sufficient to show that

[U ∈ Cx(U ∪ S) and U ∈ Cx(U ∪ {k})] ⇒ U ∈ Cx(U ∪ S ∪ {k}).

Now, suppose for a contradiction that U /∈ Cx(U ∪S ∪ {k}). Then for any T ∈ Cx(U ∪S ∪
{k}), we know that T is chosen instead of U . On the other hand, U is chosen from among

U ∪ S, thus T cannot be a subset of U ∪ S, i.e., T � U ∪ S. Since T ⊆ U ∪ S ∪ {k}, we
conclude that k ∈ T . On the other hand, U ∈ Cx(U ∪ {k}) implies that {k} ∈ Rx(U ∪ {k}),
which implies, due to substitutability, {k} ⊆ (U ∪ S ∪ {k})\T for some T ∈ Cx(U ∪ S ∪ {k}).
But then k /∈ T yielding the desired contradiction. �

Proof of Proposition 2

At
x is the set of students who have applied to school x in some round k ≤ t. Hence

A1
x ⊆ A2

x ⊆ · · ·

The algorithm requires that those students rejected in rounds k ≤ t−1 would still be rejected

if they were considered to be among the applicants in round t. This can be ensured thanks

to condition (b) of substitutability, because Zt−1
x = At−1

x \S �
x for some S �

x ∈ Cx(At−1
x ) and

At−1
x ⊆ At

x together imply that there exist Zt
x = At

x\S ��
x such that Zt

x ⊇ Zt−1
x for some

S ��
x ∈ Cx(At

x).

In order to see that the algorithm indeed ends, note that at any round if a student is

not matched, then she applies to her next favorite school in the following round. Therefore,

she either exhausts all her acceptable schools by going down all the way to the end of her

preference list, or ends up being matched with some school.

Suppose that the algorithm ends at round m, and µ is the matching obtained at the

end. Students only apply to schools they find acceptable, so a student i would only be

matched with a school x where xRii. Therefore µ is individually rational. Secondly, since

Am
x \µ−1(x) = Zm

x ∈ Rx(Am
x ), we have

µ−1(x) ∈ Cx(Am
x ).

Those who weakly prefer x to their match under µ are either matched with x, or have applied

to x at some round of the algorithm. Thus, Am
x = {i | xRiµ(i)}. Now, since µ−1(x) ∈

Cx({i | xRiµ(i)}), we conclude from condition (a) of substitutability that µ−1(x) ∈ Cx(S) for
any S such that µ−1(x) ⊆ S ⊆ {i | xRiµ(i)}). Hence µ is stable.

�
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Proof of Proposition 3

The main part in proving the proposition is (⇐), i.e., showing that a strongly acyclic C leads

to efficient fC. We will prove this part in two steps.

Given a priority structure C, a generalized weak cycle of size n is constituted of

distinct schools x0, x1, . . . , xn−1 ∈ X and distinct students j, i0, i1, . . . , in−1 ∈ N with n ≥ 2

such that

(1) x� �= x�+1 for � ∈ {0, 1, . . . , n− 1} (with xn = x0),

(2) there exist mutually disjoint sets of students Sx0 , . . . , Sxn−1 ⊆ N \ {j, i0, i1, . . . , in−1}
such that

(C)

j /∈ DCx0(Sx0 ∪ {i0, j})
j ∈ DCx0(Sx0 ∪ {in−1, j})
in−1 /∈ DCx0(Sx0 ∪ {i0, in−1})
in−2 /∈ DCxn−1(Sxn−1 ∪ {in−1, in−2})
...

i1 /∈ DCx2(Sx2 ∪ {i2, i1})
i0 /∈ DCx1(Sx1 ∪ {i1, i0})

(S) |Sx�
| = qx�

− 1 for � = 0, 1, . . . , n− 1.

Step 1: If there exists a Pareto inefficient assignment µ ∈ fC(R), then C has a generalized

weak cycle.

Proof of Step 1: Suppose that µ ∈ fC(R) is not Pareto efficient. Of all the Pareto improve-

ments over µ, let ν be one which has the least number of students improving over µ. Denote

by N � the set of students who are better off under ν compared with µ:

N � = {i | ν(i)Piµ(i)}.

Denote by Eµ
j the set of students who envy the student j under µ:

Eµ
j = {� ∈ N | µ(j)P�µ(�)}.

Set E �
j to be the set of students in N � who envy j. That is,

E �
j = Eµ

j ∩N � = {� ∈ N � | µ(j)P�µ(�)}.
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Since C is acceptant, µ must be non-wasteful, and therefore the “reshuffling lemma” ap-

plies, i.e., any Pareto improvement over µ is due to reshuffling of already assigned objects

between their recipients. Therefore if j ∈ N �, that is, if j is part of an improvement, she

must receive someone else’s object, whereas her object must be reassigned to another person

who necessarily is also better off. In other words we have µ(j) ∈ ν(N �). In particular, µ(j)

is desired by some student in N � under µ, and hence E �
j is nonempty. Because µ respects

priorities, we have

µ−1(µ(j)) ∈ Cµ(j)(Eµ
j ∪ µ−1(µ(j))).

Furthermore, E �
j ⊆ Eµ

j and C being substitutable imply that

µ−1(µ(j)) ∈ Cµ(j)(E �
j ∪ µ−1(µ(j))).

Removing j from the choice set, we conclude, again using substitutability, that µ−1(µ(j))\{j}
is a subset of a chosen element from E �

j ∪ µ−1(µ(j))\{j}. In other words

µ−1(µ(j))\{j} ⊆ S � for some S � ∈ Cµ(j)(E �
j ∪ µ−1(µ(j))\{j}).

Any such S � has exactly one element from E �
j, and let E �

j be the set of those elements:

E �
j =

�
�

�����
� ∈ E �

j, and (µ−1(µ(j))\{j}) ∪ {�} = S �

for some S � ∈ Cµ(j)(E �
j ∪ µ−1(µ(j))\{j})

�

Thus, E �
j is a nonempty subset of N � for each j ∈ N �. Consider a directed graph whose

set of vertices is N �. For each i ∈ E �
j, let there be a directed edge from i to j. Therefore,

every vertex in this graph has an incoming edge, and since it is a finite graph, there must be

a cycle.

Let the shortest cycle in this graph consist of students i0, i1, . . . , in−1, in = i0, where n ≥ 2,

and there is an edge from i� to i�+1 for � = 0, 1, . . . , n− 1. Denoting µ(i�) = x�, since i� envy

i�+1, we have x� �= x�+1 for each �. In fact, these schools x0, . . . , xn−1 must be distinct, for

otherwise we would have a shorter cycle, which would give a Pareto improvement over µ,

involving a smaller number of students improving. To be more precise, if x0 = xk for some

k ≤ n− 1, then the cyclic trade which allows i� take x�+1 for � = 0, . . . , k − 1, and letting ik

take x0 would lead to a Pareto improvement over µ. Since k < n, this would contradict with

the assumption that ν was the “smallest” improvement over µ. Since µ(i�) = x�, the students

i0, . . . , in−1 are necessarily distinct.

The fact that µ respects acceptant priorities implies that it is non-wasteful. Since each x�

is desired by some student at assignment µ, all seats at these schools must be assigned under
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µ. Denoting Sx�
= µ−1(x�)\{i�}, we know that Sx0 , . . . , Sxn−1 are mutually disjoint subsets of

N \ {i0, i1, . . . , in−1}, because x0, x1, . . . , xn−1 are distinct schools. Moreover we have

(1) |Sx�
| = qx�

− 1,

(2) in−1 /∈ DCx0(Sx0 ∪ {i0, in−1})
in−2 /∈ DCxn−1(Sxn−1 ∪ {in−1, in−2})

... (*)

i1 /∈ DCx2(Sx2 ∪ {i2, i1})
i0 /∈ DCx1(Sx1 ∪ {i1, i0})

because otherwise, if student i� were to be in DCx�+1
(Sx�+1

∪ {i�+1, i�}) for some �, then we

would have Sx�+1
∪ {i�+1} /∈ Cx�+1

(Sx�+1
∪ {i�+1, i�}), contradicting stability of µ.

Let ω be the assignment derived from µ by letting the students i0, i1, . . . , in−1 exchange

their schools along the improvement cycle suggested above. In other words,

ω(i) =

�
µ(i) i �= i�

µ(i�+1) i = i�

ω Pareto dominates µ, whereas µ is constrained efficient, so ω must not be stable. There-

fore the cyclic trade letting i� take µ(i�+1) for � = 0, 1, . . . , n− 1, n ≡ 0 cannot be respecting

priorities. All school priorities are acceptant, and the new matching ω is clearly individ-

ually rational. Therefore we know from Proposition 1 that there must be a blocking pair

involving one of these schools. Suppose that j and x0 form a blocking pair for ω, i.e.,

ω−1(x0) /∈ Cx(ω−1(x0) ∪ {j}). Then x0Pjω(j) and

j ∈ DCx0(ω
−1(x0) ∪ {j}) = DCx0(Sx0 ∪ {in−1, j}). (**)

First, note that j �= in−1, because ω(in−1) = x0Pjω(j). Secondly, j �= i0, because

ω(i0)Pi0µ(i0) = x0, while x0Pjω(j). And lastly if j = ik for some k ∈ {1, . . . , n− 2}, then we

have an envy cycle

i0 → i1 → · · · → ik → i0

which would allow a Pareto improvement involving only k+1 ≤ n−1 students, contradicting

our earlier choice of a smallest Pareto improvement over µ. Thus j /∈ {i0, . . . , in−1}.
Furthermore, stability of µ implies

j /∈ DCx0(Sx0 ∪ {i0, j}). (***)
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Thus, combining (*), (**), and (***), we have a generalized weak cycle

j /∈ DCx0(Sx0 ∪ {i0, j})
j ∈ DCx0(Sx0 ∪ {in−1, j})
in−1 /∈ DCx0(Sx0 ∪ {i0, in−1})
in−2 /∈ DCxn−1(Sxn−1 ∪ {in−1, in−2})
...

i1 /∈ DCx2(Sx2 ∪ {i2, i1})
i0 /∈ DCx1(Sx1 ∪ {i1, i0})

with |Sx�
| = qx�

− 1 for � = 0, 1, . . . , n− 1.

Step 2: If C has a generalized weak cycle, then it has a weak cycle.

Proof of Step 2: Suppose that C has a generalized weak cycle and let the size of its shortest gen-

eralized weak cycle be n. We will show that n = 2, which will prove step 2, since a weak cycle

is a generalized weak cycle of size 2. Suppose that x0, x1, . . . , xn−1 ∈ X; j, i0, i1, . . . , in−1 ∈ N

and Sx0 , . . . , Sxn−1 ⊆ N \ {j, i0, . . . , in−1} form a shortest generalized weak cycle. We will

assume that it is of size n ≥ 3, and reach a contradiction.

Let us look at the the set of definitely chosen students from Sx1 ∪ {i0, i2} according to the

priorities of x1. Is i0 in this set or not?

If so, i.e., if i0 ∈ DCx1(Sx1 ∪ {i0, i2}), then

i0 /∈ DCx1(Sx1 ∪ {i1, i0})
i0 ∈ DCx1(Sx1 ∪ {i0, i2})
i2 /∈ DCx1(Sx1 ∪ {i1, i2})
i1 /∈ DCx2(Sx2 ∪ {i2, i1}),

which is a weak cycle, i.e., a generalized weak cycle of length 2, contradicting with our

assumption of shortest cycle being of length at least 3.

If on the other hand, i0 /∈ DCx1(Sx1 ∪ {i0, i2}), then we get the following generalized weak
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cycle

j /∈ DCx0(Sx0 ∪ {i0, j})
j ∈ DCx0(Sx0 ∪ {in−1, j})
in−1 /∈ DCx0(Sx0 ∪ {i0, in−1})
in−2 /∈ DCxn−1(Sxn−1 ∪ {in−1, in−2})
...

i2 /∈ DCx3(Sx3 ∪ {i3, i2})
i0 /∈ DCx1(Sx1 ∪ {i2, i0})

with |Sx�
| = qx�

− 1 for � = 0, 1, 3, . . . , n − 1. This cycle is shorter than the one we started

with, because it does not have x2, hence yields the desired contradiction to our original cycle

being the shortest.

=⇒: Let N , X, and q and C be given. Assume that C has a weak cycle. Let i, j, k ∈ N , and

x, y ∈ X such that there exist Sx, Sy ⊆ N\{i, j, k} with Sx ∩ Sy = ∅ satisfying

j /∈ DCx(Sx ∪ {i, j})
j ∈ DCx(Sx ∪ {k, j})
k /∈ DCx(Sx ∪ {k, i})
i /∈ DCy(Sy ∪ {k, i})

with |Sx| = qx − 1 and |Sy| = qy − 1.

Consider the preference profile R where students in Sx and Sy, respectively, rank x and y

as their top choice, and the preferences of i, j, and k are such that yPixPiiPi · · · , xPjjPj · · · ,
and xPkyPkkPk · · · . Finally, let students outside Sx ∪ Sy ∪ {i, j, k} prefer not to be assigned

to any school. Consider the assignment µ such that for each � ∈ Sx ∪ {i} one has µ(�) = x,

and for each � ∈ Sy ∪ {k} one has µ(�) = y. Now the only candidates for blocking pairs are

(j, x), (k, x), and (i, y). However, the weak cycle conditions are such that j /∈ DCx(Sx∪{i, j})
k /∈ DCx(Sx∪{k, i}), and i /∈ DCy(Sy∪{k, i}), ensuring that µ respects priorities C. Moreover,

there is only one assignment that Pareto dominates µ, namely the assignment ν obtained from

µ by letting i and k trade their assigned schools. Since j ∈ DCx(Sx ∪ {j, k}), xPjν(j) and

ν−1(x) = Sx ∪ {k}, the assignment ν does not respect C. Thus µ is constrained efficient, but

not Pareto efficient. �
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Proof of Proposition 4

We will now show that if a stable assignment µ is Pareto dominated by another stable as-

signment ν, then µ must admit an SSIC. From this, it will follow that if µ does not admit an

SSIC, then it must be constrained efficient.

Let N � = {i ∈ N | µ(i) �= ν(i)} and X � = {ν(i) | i ∈ N �}. For any i ∈ N �, we know by the

reshuffling lemma that µ(i) ∈ X �. Let i ∈ N �, and µ(i) = x. Denote

Dµ
x = {j ∈ N | xPjµ(j)}, D�

x = {j ∈ N � | xPjµ(j)}, D��
x = {j ∈ N\N � | xPjµ(j)}

and set18

D̄x = D�
x �D��

x � µ−1(x) = Dµ
x � µ−1(x).

Stability of µ implies that

µ−1(x) ∈ Cx(D̄x)

Moreover, stability of ν implies that

D��
x ⊆ T �� for some T �� ∈ Rx(D

ν
x � ν−1(x)). (�)

ν Pareto dominates µ, so those who desire x at ν, desire x at µ as well. Therefore

Dν
x = {j ∈ N | xPjν(j)} ⊆ Dµ

x . Moreover, if j ∈ ν−1(x), then either j ∈ µ−1(x) or j ∈ D�
x.

And finally, since µ(i) = x and i ∈ N �, we know that i /∈ ν−1(x), and ν(i)Pix. Therefore

i /∈ Dν
x. Thus

Dν
x � ν−1(x) ⊆ Dµ

x ∪ ν−1(x) ⊆ D̄x\{i}. (��)

Now we conclude by using (�), (��), and substitutability that

D��
x ⊆ T � for some T � ∈ Rx(D̄x\{i}).

Denoting

S � = (D̄x\{i})\T �,

we have

S � ∈ Cx(D̄x\{i}) and S � ∩D��
x = ∅.

Note that

D̄x\{i} = D�
x �D��

x � [µ−1(x)\{i}],
18We use � to denote “disjoint union” throughout the Appendix.
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and |µ−1(x)\{i}| ≤ qx − 1. Since C is acceptant, and |D̄x\{i}| ≥ qx, we must have |S �| ≥ qx.

Because of |µ−1(x)\{i}| ≤ qx − 1 and that S � ∩D��
x = ∅, we have

S � ∩D�
x �= ∅.

Hence, there exists i� ∈ D�
x such that {i�} ∪ [µ−1

x \{i}] ∈ Cx(D̄x\{i}), i.e.,

i� ∈ Eµ
i .

Now construct a directed graph with N � being its set of vertices. For any i ∈ N �, the

above argument shows that there is i� ∈ N � such that i� ∈ Eµ
i , so draw an edge i� → i. Since

this is a finite graph with every vertex having an incoming edge, there must be cycle. By

construction, this is an SSIC. �

Proof of Proposition 5

Denote the assignment obtained by carrying out this SSIC by ν, i.e., define matching ν as

ν(j) =

�
µ(i�+1) if j = i�

µ(j) otherwise

Case 1: If the schools µ(i0), µ(i1), . . . , µ(in−1) are distinct, then one straightforwardly

verifies that ν is stable.

Case 2: Now consider the case in which the schools µ(i0), µ(i1), . . . , µ(in−1) are not distinct.

Suppose for a contradiction that ν is not stable. So by Proposition 1 it must admit a

blocking pair (j, x), with j ∈ N , and x ∈ X. That is,

j ∈ DCx(ν
−1(x) ∪ {j}) and xPjν(j).

Note that µ(j) �= x, and such a school x must appear more than once in the SSIC, for

otherwise ν−1(x) = [µ−1(x)\{i�+1}]∪{i�} and i� ∈ Ei�+1
, and hence j /∈ DCx((µ−1(x)\{i�+1})∪

{i�, j}), contradicting with (j, x) being a blocking pair.

Suppose that the school x is involved in moves ikt → ikt+1 for t = 1, . . . ,m, such that the

SSIC looks like:

i0 → · · · → ik1 → ik1+1 → · · · → ik2 → ik2+1 → · · · → ikm → ikm+1 → · · · → in−1,

where kt ∈ {0, . . . , n− 1} and µ(ikt+1) = x for all t ∈ {1, 2, . . . ,m}.
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Since (j, x) is a blocking pair for ν, we have xPjν(j) and j ∈ DCx(ν−1(x) ∪ {j}). Thus

xPjν(j)Rjµ(j), and j ∈ Eµ
kt+1 for all t.

The definition of SSIC and substitutability implies that for each t ∈ {1, . . . ,m} there

exists At such that

[µ−1(x)\{ik1+1, . . . ikm+1}] ∪ {ikt} ⊆ At ∈ Cx(ν−1(x) ∪ {j}),

because ikt ∈ Eµ
ikt+1

for all t ∈ {1, 2, . . . ,m}.
Note that j is in At, because j ∈ DCx(ν−1(x) ∪ {j}).
Thus we get

[µ−1(x)\{ik1+1, . . . , ikm+1}] ∪ {ikt} ∪ {j} ⊆ At ∈ Cx(ν−1(x) ∪ {j}).

Let us write At as the disjoint union

At = Bt � [µ−1(x)\{ik1+1, . . . , ikm+1}].

So for all t ∈ {1, . . . ,m}:

{ikt , j} ⊆ Bt ⊆ {ik1 , . . . , ikm , j}, and |Bt| = m.

There must exist t, t� such that Bt �= Bt� , for otherwise {ik1 , . . . , ikm , j} ⊆ Bt contradicting

with |Bt| = m. Let the symmetric difference of Bt and Bt� be {ikr , iks}, where r < s, so that

Bt = B̃ ∪ {ikr} and Bt� = B̃ ∪ {iks},

and hence

At = Ã ∪ {ikr} and At� = Ã ∪ {iks},

where Ã = B̃ � [µ−1(x)\{ik1 , . . . , ikm}].
Since

At, At� ∈ Cx(ν−1(x) ∪ {j}),

ν−1(x) ∪ {j} ⊆ Eµ
iks+1

∪ [µ−1(x)\{iks+1}], and

[µ−1(x)\{iks+1}] ∪ {iks} ∈ Cx(Eµ
iks+1

∪ [µ−1(x)\{iks+1}]),

ETE19 implies that [µ−1(x)\{iks+1}] ∪ {ikr} ∈ Cx(Eµ
iks+1

∪ [µ−1(x)\{iks+1}]), and therefore

ikr ∈ Eµ
iks+1

. Hence there is a shorter SSIC which looks like

i0 → · · · → ik1 → ik1+1 → · · · → ikr → iks+1 → · · · → ikm → ikm+1 → · · · → in−1,

19Recall that ETE requires that if ikr can substitute iks to complement some set A, then she can substitute

him to complement any other set B from any larger set of applicants.
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contradicting with the initial assumption that the original SSIC was the shortest such cycle.

�

Proof of Proposition 6

Assume the contrary, and let ν ∈ fC(R�
i, R−i) such that ν(i)Piµ(i) for all µ ∈ fC(R).

First of all, there exists an acceptant substitutable strict resolution C of C such ν =

fC(R�
i, R−i).

A matching stable with respect to C and R is stable with respect to C and R.

Therefore, there exists µ ∈ fC(R) such that µ weakly Pareto dominates fC(R). Hence

ν(i)Piµ(i)RifC(R)(i).

This, in turn, implies that fC(R�
i, R−i)PifC(R), i.e., fC is not strategy-proof. But this is a

contradiction, because if C is acceptant, substitutable and strict, then we know from Hatfield

and Milgrom (2005) that fC is strategy-proof. �

Proof of Proposition 7

We begin with two lemmas.

Lemma 1 Let � be a priority order which prioritizes the target distribution qT , and is DCR

with respect to some �exo. If |S| ≥ q, then S � ∈ C(S) if and only if S � has the following

properties:

(L1) |S �| = q,

(L2) If |Sτ | ≤ qτ , then Sτ ⊆ S �,

(L3) If |Sτ | > qτ , then |S �
τ | ≥ qτ , and for all s� ∈ S �

τ and ŝ ∈ Sτ\S �
τ , we have s� �exo ŝ,

(L4) If |S �
τ | > qτ , then for all s� ∈ S �

τ and ŝ ∈ S\S �, we have s� �exo ŝ.

Proof of Lemma.

(⇒): (L1) Let S � ∈ C(S). Since � is acceptant and |S| ≥ q, |S �| = q for every S � ∈ C(S).
(L2) d(S �) is even since |S �| = q. If d(S �) = 0 then the condition trivially holds, so assume

d(S �) = 2a, where a ≥ 1. Suppose, for a contradiction, that there is a type τ � such that

Sτ � �⊆ S �. Pick an agent in Sτ �\S �, denoted by s�. Since |S �| = q and
�

τ q
τ = q, there must

be τ �� such that |S �
τ �� | > qτ

��
. Let s�� ∈ S �

τ �� .
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Setting S �� = [S �\{s��}] � {s�},
�

τ

||S �
τ |− qτ | = ||S �

τ � |− qτ
� |+ ||S �

τ �� |− qτ
�� |+

�

τ �=τ �,τ ��

||S �
τ |− qτ |,

and �

τ

||S ��
τ |− qτ | = ||S ��

τ � |− qτ
� |+ ||S ��

τ �� |− qτ
�� |+

�

τ �=τ �,τ ��

||S ��
τ |− qτ |.

Since

||S �
τ � |− qτ

� | = ||S ��
τ � |− qτ

� |+ 1

||S �
τ �� |− qτ

�� | = ||S ��
τ �� |− qτ

�� |+ 1,

we have d(S ��) = 2a− 2, and by (PD), S �� � S �, but S � ∈ C(S), a contradiction.

(L3) By the argument above used in verifying (L2), we conclude that |S �
τ | ≥ qτ . Secondly,

suppose for a contradiction that |Sτ | ≥ qτ , but there exist ŝ ∈ Sτ\S �
τ and s� ∈ S �

τ such that

ŝ �exo s�. Since s� and ŝ are of the same type, [S �\{s�}]∪ {ŝ} and S � are equidistant from qT .

Now (DCR) implies [S �\{s�}]�{ŝ} � S �, whereas we have S � ∈ C(S), yielding a contradiction.

(L4) suppose for a contradiction that there exist ŝ ∈ S\S � and s� ∈ S �
τ such that ŝ �exo s�.

Conditions (L1)–(L3) and the fact that ŝ ∈ S\S � imply that |Sτ̂ | > qτ̂ , where τ(ŝ) = τ̂ . Since

|S �
τ | > qτ , we have |S �

τ\{s�}| ≥ qτ . Therefore [S �\{s�}] � {ŝ} and S � are equidistant from qT .

Thus, by (DCR) we have [S �\{s�}] � {ŝ} � S �, a contradicting with the fact that S � ∈ C(S).
�

(⇐): Suppose S � satisfies (L1)–(L4) but S � �∈ C(S). Then there is S �� ∈ C(S) such that

S �� � S �. Note that S �� satisfies (L1)–(L4) by part (⇒). Secondly, d(S �) = 2a if and only if

d(S ��) = 2a.

The symmetric difference of sets S � and S �� has an even number of elements, and we will

prove the argument by induction on ∆ = 1
2(|S

�\S ��|+ |S ��\S �|).

(Step ∆ = 1) Let S �\S �� = {s�1} and S ��\S � = {s��1}. We know that d(S �) = d(S ��) = 2a,

S � /∈ C(S), and S �� ∈ C(S), therefore (DCR) implies s��1 �exo s�1.

If τ(s�1) �= τ(s��1), then |S ��
τ(s�1)

| = qτ(s
�
1)−1, which contradicts with s�1 ∈ S �� and (L3). Hence

τ(s�1) = τ(s��1). But now (L3) applied to S � implies s�1 �exo s��1, contradicting s��1 �exo s�1.

(Step ∆ = n) Assume the conclusion holds for ∆ < n, and let s�1, . . . , s
�
n ∈ S �\S ��, and
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s��1, . . . , s
��
n ∈ S ��\S �. Without loss of generality, we assume that s�1 �exo s�2 �exo · · · �exo s�n

and s��1 �exo s��2 �exo · · · �exo s��n.

Case 1: (s�1 �exo s��1). Then d([S ��\{s��1}] � {s�1}) = 2a and [S ��\{s��1}] � {s�1} � S ��, a contradic-

tion.

Case 2: (s�1 ∼exo s��1). Then S �� ∼ [S ��\{s��1}] � {s�1}. This means that [S ��\{s��1}] � {s�1} � S �

and |([S ��\{s��1}] � {s�1}) ∩ S �| = q − (n − 1). This case reduces to n − 1, and by assumption,

the conclusion holds.

Case 3: (s��1 �exo s�1). Then s��1 ∈ S\S � and (L4) imply that |S �
τ(s�1)

| = qτ(s
�
1). Note that

τ(s�1) �= τ(s��1). Then

|Sτ(s�1)
∩ S ��| < qτ(s

�
1) if τ(s��i ) �= τ(s�1) ∀i ∈ {2, . . . , n},

|Sτ(s�1)
∩ S ��| = qτ(s

�
1) if τ(s��i ) = τ(s�1) ∃i ∈ {2, . . . , n}.

Clearly, a case that |Sτ(s�1)
∩ S ��| < qτ(s

�
1) leads to a contradiction. When |Sτ(s�1)

∩ S ��| = qτ(s
�
1),

since |Sτ(s�1)
| > qτ(s

�
1), s�1 �exo s��i . Then d([S ��\{s��i }] � {s�1}) = 2a, and

[S ��\{s��i }] � {s�1} � S ��.

Since S �� ∈ C(S), it must be

[S ��\{s��i }] � {s�1} ∼ S ��.

Then s�1 ∼exo s��i . Therefore [S ��\{s��i }] � {s�1} ∈ C(S) and [S ��\{s��i }] � {s�1} � S �. Notice that

|([S ��\{s��i }] � {s�1}) ∩ S �| = q − (n− 1), which reduces to n− 1. �
The following lemma says that given �, if monotonicity of the acceptance and rejection

correspondences are satisfied by pairs of sets S ⊆ T with |T\S| = 1, then � is substitutable.

Lemma 2 Given a priority rule C, suppose that for each S ⊆ T with |T\S| = 1, the following

conditions hold

(a) for each T � ∈ C(T ), we have T � ∩ S ⊆ S � for some S � ∈ C(S), and

(b) for each S � ∈ C(S), we have T � ∩ S ⊆ S � for some T � ∈ C(T ).

Then C is substitutable.
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Proof of Lemma. We need to show that conditions (a) and (b) hold for arbitrary pairs

of sets S ⊆ T . We will do induction on k = |T\S|. We are given that the conditions hold

whenever k = 1. Assuming that that hold for k ≤ m− 1, we need to verify them for k = m.

Let |T\S| = m.

(a) Given T � ∈ C(T ), pick some t ∈ T\T �, and set T̃ = T\{t}. By the induction hypothesis,

T �∩T̃ ⊆ T �� for some T �� ∈ C(T̃ ). Since T �∩T̃ = T � and C is acceptant, T � = T �� and T � ∈ C(T̃ ).
If t /∈ S, then S ⊆ T̃ . Since |T̃\S| = m − 1, by the induction hypothesis T � ∩ S ⊆ S � for

some S � ∈ C(S).
If, on the other hand, t ∈ S for all t ∈ T\T �, then let T̂ = T\{t̂} for some t̂ /∈ S. Such

t̂ is necessarily in T �. Again, by the induction hypothesis, T �\{t̂} = T � ∩ T̂ ⊆ T �� for some

T �� ∈ C(T̂ ).
S ⊆ T̂ , because t̂ /∈ S. Using the induction hypothesis

T � ∩ S = (T �� � {t̂}) ∩ S = T �� ∩ S ⊆ S �� for some S �� ∈ C(S).

(b) Given S � ∈ C(S), let t ∈ T\S and T̃ = T\{t}. Then |T̃\S| = k − 1, and there must

exist T̃ � ∈ C(T̃ ) such that T̃ � ∩ S ⊆ S �.

T̃ ⊆ T and |T\T̃ | = 1, therefore there exists T � ∈ C(T ) such that T �∩ T̃ ⊆ T̃ �. Intersection

both sides with S, we get S ∩ T � ∩ T̃ ⊆ S ∩ T̃ �. Since S ∩ T̃ = S ∩ T , and T̃ � ∩ S ⊆ S �, we

conclude T � ∩ S ⊆ S �. �

Proof of Proposition 7.

Lemma 2 allows us to conclude that � is substitutable by checking conditions (a) and (b)

for pairs of sets S and T such that |T\S| = 1. Since � is acceptant, it suffices to prove the

claim when |S| ≥ q + 1. Thus, let {t} = T\S and |S| ≥ q + 1.

Proof of condition (a): Suppose T � ∈ C(S � {t}) and d(T �) = 2a. If t /∈ T �, then T � ⊆ S and

properties (L1)–(L4) hold. Thus T � ∈ C(S), and condition (a) is trivially satisfied.

So now suppose that t ∈ T �.

Case 1. |Tτ(t)| ≤ qτ(t). Then Sτ(t) ⊆ T �, and for all ŝ ∈ S\T �,

d([T �\{t}] � {ŝ}) = 2a+ 2.

Let ŝ1 �exo ŝ2 �exo · · · �exo ŝn be the students in S\T �.

We claim that S � = [T �\{t}] � {ŝ1} ∈ C(S). Clearly |S �| = q.
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For all S �
τ with |S �

τ | ≤ qτ , S �
τ = T �

τ ⊆ S � if τ �= τ(t). S �
τ(t) = T �

τ(t)\{t} ⊆ S �.

For all S �
τ with |S �

τ | > qτ , since ŝ1 �exo ŝ for all ŝ ∈ S\T � and

qτ(ŝ1) ≤ |T �
τ(ŝ1)| < |S �

τ(ŝ1)|,

(L3) and (L4) hold. By Lemma 1, S � ∈ C(S).
Case 2. |Tτ(t)| > qτ . Then |T �

τ(t)| ≥ qτ . If |T �
τ(t)| = qτ(t), then there is ŝ ∈ S\T � such

that τ(ŝ) = τ(t). For these ŝ, d([T �\{t}] � {ŝ}) = 2a. By (DCR), we can find ŝ1 who is at

least as good as any other agent who is in Sτ(t). It is easy to see that [T �\{t}]� {ŝ1} satisfies

(L1)–(L4).

Otherwise, |T �
τ(t)| > qτ(t), in which case

d([T �\{t}] � {ŝ}) = 2a

for all ŝ ∈ S\T �. If ŝ1 �exo ŝ2 �exo · · · �exo ŝn are the students in S\T �, we conclude that

[T �\{t}] � {ŝ1} satisfies (L1)–(L4). ♦

Proof of condition (b): We will show that the rejection correspondence R is monotonic in the

sense that for each R� ∈ R(S), we have R� ⊆ T �� for some T �� ∈ R(T ). Condition (b) will then

follow from Remark 2.

Suppose R� ∈ R(S). By definition, R� = S\S � for some S � ∈ C(S). We claim that there is

ŝ ∈ (S � {t})\R� such that R� � {ŝ} ∈ R(S � t).

Case 1. |(S � {t})τ(t)| ≤ qτ(t). Then |Sτ(t)| < qτ(t). This implies that there is τ � such

that |S �
τ � | > qτ

�
. Then for all si ∈ R�

τ � , ŝ �exo si for all ŝ ∈ S �
τ � . Consider such types

{τ �1, . . . , τ �m}. Take s∗ ∈
�

i∈{1,...,m} Sτ �i
in a way that ŝ �exo s∗ for all ŝ ∈

�
i∈{1,...,m} Sτ �i

. We

see that R� � {s∗} ∈ R(S � {t}). Let S �� = (S � {t})\(R� � {s∗}). Since |(S � {t})τ(t)| ≤ qτ(t),

(S�{t})τ(t) ⊆ S ��. For τ(s∗), |S ��
τ(s∗)| ≥ qτ(s

∗) and by construction, S �� satisfies other properties.

Hence, S �� ∈ C(S � {t}) if and only if R� � {s∗} ∈ R(S � {t}).
Case 2. |(S � t)τ(t)| > qτ(t). Then we can find ŝ ∈ (S � {t})τ(t) such that si �exo ŝ for all

si ∈ (S � {t})τ(t). Consider τ � such that |S �
τ � | > qτ

�
and let them be {τ �1, . . . , τ �m} (possibly

empty). If for all such τ �i , s �exo ŝ, for all s ∈ S �
τ �i

or there is no such τi, then S\(R� � {ŝ})
satisfies (L1)–(L4) and we are done. Otherwise there is si ∈ S �

τ �i
such that ŝ �exo si for some

i ∈ {1, . . . ,m}. Then we can find ŝi such that si �exo ŝi for all si ∈ S �
τ �i
. Let s∗ be such that

ŝi �exo s∗ for any i. Then it also easy to see that S �� = S\(R� � {s∗}) satisfies (L1)–(L4).

Therefore, R� � {s∗} ∈ R(S � {t}).
Hence condition (b) holds. �
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Proof of Proposition 8

It follows from Propositions 4 and 7 that if an assignment stable with respect to C does not

admit an SSIC, then it is constrained efficient. For the other direction, it suffices to show

that if a stable assignment admits an SSIC, then the assignment obtained by carrying out the

shortest SSIC is stable.

As in the proof of Proposition 5, consider the shortest SSIC, and denote by ν the assign-

ment obtained by carrying out this SSIC. Suppose, for a contradiction, that ν is not stable.

First of all, it is straightforward to see that if the schools µ(i0), . . . , µ(in−1) involved in this cy-

cle were distinct, ν would be stable. So let us assume that the schools are not distinct. Again,

as in the proof of Proposition 5, if (j, x) is a blocking pair, then the school x must appear more

than once in this SSIC. Let x be involved in moves ikt → ikt+1 such that ν(ikt) = µ(ikt+1) = x

for t = 1, . . . ,m.

Claim: τ(ikt) �= τ(iku) for every t, u ∈ {1, . . . ,m} and t �= u.

Proof of claim. Assume otherwise, and thus τ = τ(ikt) = τ(iku) for some t and u �= t.

Since ikt ∈ Eµ
ikt+1

and iku ∈ Eµ
ikt+1

,

[µ−1(x)\{ikt+1}] � {ikt} � [µ−1(x)\{ikt+1}] � {iku}.

Since ikt and iku are of the same type, we have

d([µ−1(x)\{ikt+1}] � {ikt}) = d([µ−1(x)\{ikt+1}] � {iku}),

which implies by (DCR) that

ikt �exo iku .

Using a symmetric argument, we must have iku �exo ikt , and therefore

ikt ∼exo iku .

Hence iku ∈ Eµ
kt+1, allowing us to construct a shorter SSIC. ♦

Since (j, x) is a blocking pair, we know that j ∈ DCx(ν−1(x) ∪ {j}) and xPjµ(j).

Case 1. |(ν−1(x) � {j})τ(j)| ≤ qτ(j). Then |(ν−1(x))τ(j)| ≤ qτ(j) − 1. On the other hand,

since µ is stable and j is not in µ−1(x), |(µ−1(x))τ(j)| ≥ qτ(j). That means at least one student

of type τ(j) must have left x in this SSIC. Say ikt+1 is that student. Now since ikt ∈ Eµ
ikt+1

,

and j ∈ Eµ
ikt+1

, we must have τ(ikt) = τ(j). That means another student of type τ(j) replaces

ikt+1 in the SSIC. Therefore, there must some other student, say iku+1, of type τ(j) who
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leaves x in the SSIC. By the same argument, we must have τ(iku) = τ(j). Thus we have

τ(ikt) �= τ(iku), contradicting the claim.

Case 2. |(ν−1(x) � {j})τ(j)| > qτ(j). Since j ∈ DCx(ν−1(x) � {j}), we have j ∈ A for all

A ∈ Cx(ν−1(x) � {j}). Moreover |Aτ(j)| ≥ qτ(j) and

j �exo � for all � ∈ (ν−1(x) � {j})τ\Aτ(j).

If � = ikt for some t, then stability of µ and jPjµ(j) imply |(µ−1(x))τ(j)| ≥ qτ(j). Therefore

|(µ−1(x)�{j})τ(j)| ≥ qτ(j)+1. Since µ(ikt) = x, we necessarily have ikt �exo j. Thus ikt ∼exo j,

and d([ν−1(x)\{ikt}] � {j}) = d(ν−1(x)). Since [ν−1(x)\{ikt}] � {j} ∈ C(ν−1(x) � {j}), we
must also have ν−1(x) ∈ C(ν−1(x) � {j}), contradicting with j ∈ DCx(ν−1(x) � {j}).

If there is no ikt such that ikt = �, then µ(�) = ν(�) = x. Again, stability of µ implies that

� �exo j, and therefore � ∼exo j. This, in turn, implies d([ν−1(x)\�] � {j}) = d(ν−1(x)), and

hence ν−1(x) ∈ C(ν−1(x) � {j}), contradicting with j ∈ DCx(ν−1(x) � {j}). �

B Appendix: Remarks

Remark 2 Condition (b) in Definition 1 is equivalent to the monotonicity of the rejection

correspondence. In other words, given S ⊆ T

(b) for each S � ∈ Cx(S), we have T � ∩ S ⊆ S � for some T � ∈ Cx(T )

if and only if

(b’) for each S �� ∈ Rx(S), we have S �� ⊆ T �� for some T �� ∈ Rx(T ), where

Rx(S) = {S �� ⊆ S | S �� = S\S � for some S � ∈ Cx(S)}.

In order to see (b) =⇒ (b’), let S �� ∈ Rx(S). Then S �� = S\S � for some S � ∈ Cx(S), and
hence T � ∩ S ⊆ S � for some T � ∈ Cx(T ). Taking complements in T , we get

T\(T � ∩ S) ⊇ T\S � ⊇ S\S � = S ��.

Set T �� = T\T �. Since T\(T � ∩ S) = (T\T �) ∪ (T\S), the last inclusion yields

T �� ∪ (T\S) ⊇ S ��

(T �� ∪ (T\S)) ∩ S ⊇ S �� ∩ S = S ��

T �� ∩ S ⊇ S ��,
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which implies T �� ⊇ S ��.

Now let us verify (b’) =⇒ (b). If S � ∈ Cx(S), then S � = S\S �� for some S �� ∈ Rx(S).

Condition (b�) requires S �� ⊆ T �� for some T �� ∈ Rx(T ). Again, taking complements in T

T\S �� ⊇ T\T �� = T �.

Intersection with S yields

(T\S ��) ∩ S ⊇ T � ∩ S

T ∩ (S ��)c ∩ S ⊇ T � ∩ S

S ∩ (S ��)c ⊇ T � ∩ S

S � ⊇ T � ∩ S.

♦

Remark 3 When Cx is not a function, conditions (a) and (b) in Definition 1 are not neces-

sarily equivalent. Neither condition implies the other:

(1) A priority order �x for which the associated choice correspondence is monotonic, but

the rejection correspondence is not: Suppose there are four students {i1, i2, i3, i4}, and a

school x with two seats and the following priority ranking: {i1, i4} �x {i1, i2} ∼x {i1, i3} ∼x

{i2, i3} ∼x {i2, i4} ∼x {i3, i4}. It is readily verified that Cx satisfies condition (a). To see that

�x does not satisfy condition (b), note that

Rx({i1, i2, i3}) = {{i1}, {i2}, {i3}},

but

Rx({i1, i2, i3, i4}) = {{i2, i3}},

hence

{i1} �⊆ {i2, i3}.

(2) A priority order �x for which the associated rejection correspondence is monotonic,

but the choice correspondence is not: Suppose there are five students {i1, i2, i3, i4, i5}, and a

school x with two seats and the following priority ranking: {i1, i2} ∼x {i3, i4} �x {i1, i3} ∼x

{i1, i4} ∼x {i1, i5} ∼x {i2, i3} ∼x {i2, i4} �x {i2, i5} ∼x {i3, i5} ∼x {i4, i5}.
Condition (b) can be verified straightforwardly. On the other hand condition (a) fails,

because

Cx({i1, i2, i3, i4}) = {{i1, i2}, {i3, i4}},
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but

Cx({i1, i2, i3}) = {{i1, i2}},

hence

{i3} = {i3, i4} ∩ {i1, i2, i3} �⊆ {i1, i2}.

♦

Remark 4 In an even more general formulation of priorities which allows any type of ties

between sets of students, a stability-preserving Pareto improvement does not necessarily follow

from cyclical trades of students, in which each individual move preserves stability. Even if

there is a cycle of students i1 → i2 → · · · → im → i1 such that each student can replace

the next one without violating stability, the cycle does not necessarily preserve stability.20 In

order to see this, let N = {i1, i2, i3, i4, i5}. Suppose that we have two schools x and y with

qx = 2, qy=2. Students’ preferences are:

Ri1 Ri2 Ri3 Ri4 Ri5

x y x y x

y x y x

And the priority orders are:

�x �y

{i2, i4} {i1, i2}, {i1, i3}, {i3, i4}
{i1, i4}, {i2, i3}, {i2, i5}, {i4, i5} {i1, i4}, {i2, i3}, {i3, i4}

{i1, i3}, {i3, i5} the rest

{i1, i2}, {i1, i5}, {i3, i4}

The priority structure is acceptant and substitutable. Let µ be

µ =

�
i1 i2 i3 i4 i5

y x y x i5

�

One can verify that µ is stable. Consider the following replacement cycle

i1 → i2 → i3 → i4 → i1,

20This is in contrast with the case of responsive priorities studied in Erdil and Ergin (2008).
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in which each student can replace the next, because

{i1, i4} ∈ Cx({i1, i3, i4, i5}) =⇒ i1 ∈ Eµ
i2

{i1, i2} ∈ Cy({i1, i2, i4}) =⇒ i2 ∈ Eµ
i3

{i2, i3} ∈ Cx({i1, i2, i3, i5}) =⇒ i3 ∈ Eµ
i4

{i3, i4} ∈ Cy({i2, i3, i4}) =⇒ i4 ∈ Eµ
i1 .

Now construct ν by carrying out the above cycle:

ν =

�
i1 i2 i3 i4 i5

x y x y i5

�

Clearly, ν Pareto dominates µ. However, ν is not stable, because Cx(i1, i3, i5) = {{i1, i5}, {i3, i5}},
so (x, i5) blocks ν. In fact, µ is constrained efficient. Note that the only Pareto improvement

over µ are the following:

µ1 =

�
i1 i2 i3 i4 i5

x y y x i5

�

Cy({i2, i3, i4}) = {i3, i4}, so (b, i4) blocks µ1.

µ2 =

�
i1 i2 i3 i4 i5

x x y y i5

�

Cx({i1, i2, i3}) = {i2, i3}, so (x, i3) blocks µ2.

µ3 =

�
i1 i2 i3 i4 i5

y y x x i5

�

Cx({i1, i3, i4}) = {i1, i4}, so (x, i1) blocks µ3.

µ4 =

�
i1 i2 i3 i4 i5

y x x y i5

�

Cy({i1, i2, i4}) = {i1, i2}, so (y, i2) blocks µ4.

ν =

�
i1 i2 i3 i4 i5

x y x y i5

�

ν is not stable as pointed out before. Hence, there is no stable assignment which Pareto

dominates µ, and so it is constrained efficient. ♦
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Remark 5 When priorities are allowed to be substitutable, the stable improvement cycles as

defined in Erdil and Ergin (2008) do not capture every stability preserving Pareto improve-

ment. Let x, y, z, w be distinct schools with qx = qy = 2 and qz = qw = 1. We have six

students: i, j, ki, kj, �i, �j and an assignment µ:

µ =

�
i j ki kj �i �j

x x y y w z

�
.

The priority structure is such that

Cx(�i, �j, i, j) = {i, j} Cx(�i, �j, j) = {�i, j} Cx(�i, �j, i) = {�j, i}

and

Cy(ki, kj, i, j) = {ki, kj} Cy(i, j, ki) = {i, ki} Cy(i, j, kj) = {j, kj}

Suppose the preferences R are as below, where the boxes indicate the respective students’

assignments under µ:

Ri Rj Rki Rkj R�i R�j

y y w z x x

x x y y w z

With these preferences, µ respects the priorities C, but obviously, letting each student get

their most preferred school preserves stability, while Pareto improving over µ. Can this

improvement be achieved through Erdil and Ergin’s stable improvement cycles? The only

“candidates” for such cycles are shown in Figure 2.

However, none of these cycles preserves stability. The first one fails, because Cx(�i, �j, j) =
{�i, j}, and thus �j cannot replace i at school x. The second cycle fails to preserve stability,

because Cy(i, j, kj) = {j, kj}, and therefore i cannot replace ki. Likewise, the third one fails,

because j cannot replace kj at y, while for the fourth one �i cannot replace j at x.

Yet all of the students can move to their favorite schools while preserving stability. Thus,

we can express a stability preserving student improving cycle illustrated in Figure 3 as a cycle

of students (as opposed to a cycle of schools21as in Erdil and Ergin, 2008):

i −→ kj −→ �j −→ j −→ ki −→ �i −→ i

♦
♦

21Note that this example does not rely on ties.
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x y

w

i

ki�i

x y

w

j

ki�i

x y

z

j

kj�j

x y

z

i

kj�j

Figure 2: These cycles of schools are the only candidates for stable improvement cycles in the sense

of Erdil and Ergin (2008).

i kj

�j

jki

�i

Figure 3: A stable student improvement cycle, in which the notation now indicates that i replaces

kj , and so on.
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Remark 6 If C is strongly acyclic, µ is stable and ν Pareto dominates µ, then ν is stable.

This result immediately leads to an algorithm to reach an efficient assignment. After running

the GDA, we can simply run the Top Trading Cycles algorithm to find an efficient assignment.

�
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