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Abstract: Scarf’s algorithm [18] provides fractional core elements for NTU-games. Biró and
Fleiner [3] showed that Scarf’s algorithm can be extended for capacitated NTU-games. In
this setting agents can be involved in more than one coalition at a time, cooperations may be
performed with different intensities up to some limits, and the contribution of the agents can
also differ in a coalition. The fractional stable solutions for the above model, produced by the
extended Scarf algorithm, are called stable allocations. In this paper we apply this solution
concept for the Hospitals Residents problem with Couples (HRC). This is one of the most
important general stable matching problems due to its relevant applications, also well-known
to be NP-hard. We show that if a stable allocation yielded by the Scarf algorithm turns out
to be integral then it provides a stable matching for an instance of HRC, so this method
can be used as a heuristic. In an experimental study, we compare this method with other
heuristics constructed for HRC that are applied in practice in the American and Scottish
resident allocation programs, respectively. Our main finding is that the Scarf algorithm
outperforms all the other known heuristics when the proportion of couples is high.
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1 Introduction

Mechanism design in matching markets dates back to the seminal paper of Gale and Shapley [7] on college
admissions. They introduced the concept of stable matching, that is a fair solution where an application
of a student can be rejected by a college only if its quota is filled with better candidates. Gale and
Shapley gave an efficient algorithm to find a stable matching in this setting. It turned out [15] that the

1Corresponding author. Research is supported by the Hungarian Academy of Sciences under its Momentum Programme
(LD-004/2010).

2The author is a member of the MTA-ELTE Egerváry Research Group. The research was supported by grant (no. CK
80124) from the National Development Agency of Hungary, based on a source from the Research and Technology Innovation

Fund and the results discussed below are supported by the grant TÁMOP - 4.2.2.B-10/1–2010-0009.
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same method had already been used in the US resident matching program since 1952 (now called NRMP,
see [15, 17, 22]). This program has been redesigned later [16], partly because the organisers wanted to
accommodate the wishes of couples. Since then couples can submit joint preference lists in order to avoid
being matched to hospitals far from each other. However, for the Hospitals Residents problem with couples
(HRC) the existence of a stable matching is no longer guaranteed [15]. Moreover, the related decision
problem is NP-hard [14], therefore we need to use heuristics for large markets. There are many recent
papers on this problem by economists [16], [9], [10], [11], and by computer scientists [1], [19], [12], [13] as
well, see also an interdisciplinary survey [5]. In particular, Biró, Irving and Schlotter [4] compared some
old and new heuristics for a setting that is currently present in the Scottish resident allocation program
[21, 23].

Another seminal paper in cooperative game theory is by Scarf [18]. He gave an algorithm to find a core
element for any balanced NTU-game. Aharoni and Fleiner [2] used this algorithm to find stable fractional
matchings for problems where the underlying graph is not necessarily bipartite. Biró and Fleiner [3]
generalised this result by showing that Scarf’s algorithm can be extended to find stable allocations for
NTU-games where both the agents and their cooperations can have capacities, and even when agents
have different contributions in a co-operation performed. We shall note though that the Scarf algorithm
is not known to be polynomial.

In this paper first we show that the HRC problem where couples may not apply for a pair of positions in
the same hospital, can be reduced to an integral stable allocation problem (ISA) with no edge capacities,
where we have a one-to-one correspondence between the stable solutions of the two models. Furthermore,
we show that the HRC problem (where couples may apply for a pair of positions in the same hospital)
can be transformed into an integral stable allocation problem with contributions (ISAC) and with no
edge capacities, where the stable solutions for the latter problem are stable solutions for the former. Biró
and Fleiner [3] demonstrated that the original Scarf algorithm always returns a stable allocation for both
the ISA and ISAC problems with no edge capacities, and whenever it outputs an integer solution it solves
the problem. Therefore, the Scarf algorithm can be used as a heuristic to solve all of these problems,
ISA, ISAC and HRC as well.

After this, we present an experimental study, that follows up the work by Biró, Irving and Schlotter
[4], where we compare the performance of the Scarf algorithm and other heuristics described in [16]
and [4]. Our main finding is that the Scarf algorithm works very well if the proportion of couples is
high. However, it is unrealistic to suppose that all the applicants form couples in a resident allocation
program, but there can be other applications with a similar feature. For instance, in the Hungarian
higher education matching scheme [20] students can apply to pairs of teacher courses, and they usually
do so in a very concentrated way. This causes a very similar problem, as a student applying to pairs
of courses can be seen as a couple applying to pairs of positions. The same situation occurred in the
Scottish resident allocation scheme (SPA) from 2000 to 2005, where the medical doctors had to apply
for two posts, a medical and a surgical one [8], although the elicitation of their preferences was more
restricted than in the Hungarian application.

2 Description of the models

First we present a model for the hospitals residents problem with couples, similar to the one described by
Biró, Irving and Schlotter [4]. Then we present the integral stable allocation problem with contributions
by Biró and Fleiner [3]. Finally we describe the connections between some variants of these two problems.

2.1 The Hospitals Residents problem with Couples (HRC)

In the Hospitals Residents problem with Couples (HRC) we are given a set of applicantsA = {a1, a2, . . . , an}
and a set of hospitals H = {h1, h2, . . . , hm} with c(hp) denoting the capacity of hospital hp. The set
of applicants can be partitioned into single applicants S and couples C. The preference list of a single
applicant ai ∈ S contains hospitals in the order of her preferences, whilst the preference list of couple
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(ai, aj) ∈ C contains pairs of hospitals in the order of their joint preferences. An application of a single
applicant to a hospital is referred to as a single application, a joint application is made by a couple to a
pair of hospitals. In our general model we allow that a couple may apply for a pair of positions in the
same hospital, in which case we refer to this application as a combined application. Let us denote the
above three types of applications, single applications, joint applications, and combined applications by
ES , EJ and EC , respectively. For simplicity we assume that the residents apply to hospitals that are
acceptable for them and every resident applying to a hospital is acceptable for that hospital. The solution
is a matching M that consists of employments of form 〈ai, hp〉, where if ai ∈ S then [ai → hp] ∈ ES , and
if (ai, aj) ∈ C then either [(ai, aj) → (hp, hq)] ∈ EJ and also 〈aj , hq〉 ∈ M , or [(ai, aj) → (hp, hp)] ∈ EC

and also 〈aj , hp〉 ∈ M . Let M(ai) denote the hospital where ai is allocated in M , if any, and let M(hp)
denote the set of applicants allocated to hp. A matching has to respect the capacity constraints, i.e. no
applicant may be allocated to more than one hospital and no hospital may employ more residents than its
capacity, so |M(ai)| ≤ 1 and |M(hp)| ≤ c(hp). We say that hp is full with respect to M if |M(hp)| = c(hp)
and undersubscribed otherwise. Finally we note that we can also accommodate the possibility that only
one member of a couple applies for a position (and the other member remains unmatched) in our model
by simply introducing a dummy hospital with no capacity constraint, which would correspond to the
outside option.

To define stability we need to specify the preferences of the hospitals over the set of applications. We
suppose that every hospital has a strict preference ordering over the acceptable applicants. From these
rankings we will derive the definition of stability, that is a slight extension of the stability definition by
Biró, Irving and Schlotter [4]1. A matching M is stable if it is not blocked by a pair 〈ai, hp〉 consisting of
a single applicant ai and a hospital hp, or by a coalition 〈(ai, aj), (hp, hq)〉 consisting of a couple (ai, aj)
and distinct hospitals hp and hq, or by a coalition 〈(ai, aj), (hp, hp)〉 consisting of a couple (ai, aj) and a
hospital hp.

A single applicant ai and a hospital hp block M if

(a) ai is unmatched, or prefers hp to M(ai); and

(b) hp is undersubscribed, or ranks ai higher than a member of M(hp).

A couple (ai, aj) and an acceptable pair of distinct hospitals hp and hq block M if

(c) ai and aj are unmatched, or (ai, aj) prefers (hp, hq) to (M(ai),M(aj)); and

(d) hp is undersubscribed, or hp = M(ai), or hp ranks ai higher than a member of M(hp); and

(e) hq is undersubscribed, or hq = M(aj), or hq ranks aj higher than a member of M(hq).

We say that a couple (ai, aj) and a hospital hp, acceptable to both ai and aj , block M if

(f) ai and aj are unmatched, or (ai, aj) prefers (hp, hp) to (M(ai),M(aj)); and

(g) either

– (i) hp has at least two free places in M ; or

– (ii) hp has one free place in M , and hp ∈ {M(ai),M(aj)} or both ai and aj are higher ranked
by hp than a member of M(hp); or

– (iii) hp is full in M and

1. hp ∈ {M(ai),M(aj)} and both ai and aj are higher ranked by hp than a member of
M(hp); or

1In the model described in [4] the applicants are ranked in the same way by all hospital according to a ’master list’, and
the joint applications of the couples are derived from the individual preferences by the members of the couple in a specific
way. Our definition presented here is an extension of that model as we allow hospitals to rank their applicants differently
and we have no restriction on how the joint preference lists of the couples are formed.
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2. both ai and aj are higher ranked by hp than a member ak of M(hp), and ak is a linked
applicant whose partner is also in M(hp); or

3. both ai and aj are higher ranked by hp than at least two members of M(hp).

The rationale behind this stability definition is described in [4] in detail2. We do not say that this
is the only reasonable stability definition. However, as it is described in [4] and as we will also show in
subsection 2.3, this stability definition implies a natural preference ordering over the applications by the
hospitals, and the choice functions by the hospitals over the set of applications can be derived from these
preferences in a responsive way. This is the key fact that ensures that this problem can be transformed
to the ISAC model.

2.2 Integral stable allocation problem with contributions

The stable allocation problem with contributions can be defined for hypergraphs as follows. Suppose
that we are given a hypergraph H(V,E) and for each vertex v ∈ V (H) a strict preference order over the
edges incident with v, that corresponds to the preferences of the players over the contracts in which they
can be involved, where e <v f denotes that player v prefers contract f to e. Furthermore, we introduce a
contribution vector re : V (H)→ R+ for each edge e of the hypergraph that represents the contributions
of the agents in contract e. We assume that v ∈ e if and only if re(v) > 0, that is when agent v can
contribute to contract e. Suppose that we are given nonnegative bounds on the vertices b : V (H)→ R+

and nonnegative capacities on the edges c : E(H) → R+. A nonnegative function x on the edges is an
allocation if x(e) ≤ c(e) for every edge e and

∑
e:v∈e x(e)re(v) ≤ b(v) for every vertex v. An allocation

is stable if every unsaturated edge e (i.e., every edge e with x(e) < c(e)) contains a vertex v such that∑
f :v∈f,e≤vf

x(f)rf (v) = b(v). If every bound, capacity and contribution is integral and the problem
is to find an integral stable allocation x then we refer to this problem as the integral stable allocation
problem with contributions (ISAC). Finally, if we allow unit contributions only then we get the integral
stable allocation problem (ISA).

Biró and Fleiner [3] showed that every stable allocation problem with contributions has a solution
that can be obtained by the extended Scarf algorithm. Furthermore, if we have no capacities on the
edges then the existence of a stable allocation is guaranteed by the original Scarf lemma, and one stable
allocation can be obtained by the original Scarf algorithm.

The exact description of the Scarf algorithm can be found in [18] and its extension for ISAC is
described in [3]. Here we only want to highlight some important facts of the Scarf algorithm (and its
extension). The algorithm starts with perturbing the capacities (and also the preference matrix if there
are ties in the preferences, which is not the case in our particular setting). Based on the perturbation, the
Scarf algorithm is deterministic. It takes a well-defined pivot step in each round, that can be implemented
efficiently regarding the total number of edges in the hypergraph (i.e. the number of possible contracts).
However, we do not have clear ideas on the number of pivot steps the Scarf algorithm should take before
termination, we are not aware of results giving lower or upper bounds on that. Some related open
questions are listed in [3] and also in the last section of this paper.

2.3 Solving HRC with the Scarf algorithm

First we consider the case when no combined applications are allowed.

2Here we only note that this particular stability definition reflects the aim of the matching scheme coordinators to have
cutoff scores announced for every hospital. A single application is rejected if the resident does not achieve the cutoff score.
Similarly, a joint application is rejected if either of the residents in the couple does not achieve the cutoff score at a hospital.
A combined application is rejected if the worst resident of the couple either does not achieve the cutoff score or if she/he is
better than one admitted single candidate only. Therefore the fairness of the allocation can be verified relatively easily, just
like in many higher education matching schemes that use cutoff scores, such as the Hungarian, Irish and Spanish systems,
see [6].
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Theorem 1 An instance of HRC with no combined applications can be reduced to an instance of ISA,
where the set of stable matchings in the former problem is in one to one correspondence with the set of
integral stable allocations in the latter.

Proof: Suppose that we have an instance of HRC, as described in subsection 2.1. We create an
instance of ISA with no edge capacities as follows. Vertex set V of hypergraph H(V,E) represents the
agents, namely the single applicants, couples and hospitals. The edges E of H(V,E) correspond to the
applications (i.e. possible contracts). For a single application let the contribution of both the resident
and the hospital in this contract be one, and similarly, in a joint application let the contributions of the
couple and the two hospitals be one each. The capacities of the hospitals are the same as the capacities
of the corresponding vertices, the other vertices have unit capacities and no capacity restriction is needed
for the edges.

With regard to the vertices representing the single residents and the couples, let their preferences
over the edges be the same as the preferences of the single residents and couples over their applications.
Regarding the vertices representing the hospitals, the definition of stability described in HRC implies the
following preferences by hospitals over the applications. When hospital hp receives single applications
and joint applications only, then it orders these applications according to the residents who are applying
to its positions. This may involve indifferences when the same resident is applying to the hospital in
different joint applications, but we can suppose that in this case the hospital breaks its ties according to
the couple’s preferences.

It is now immediate to see the one-to-one correspondence between the set of stable matchings of the
HRC instance and the set of integral stable allocations of the ISA instance: an application is accepted if
and only if the corresponding edge has unit value in the stable allocation.

�

Theorem 2 An instance of HRC can be transformed to an instance of ISAC, where the integral stable
allocations for the latter problem correspond to the stable matchings for the former one.

Proof: Suppose that we have an instance of HRC, as described in subsection 2.1, we create an instance
of ISAC as follows. In addition to the proof of Theorem 1, here we need to adjust our construction by
accommodating the combined applications. A combined application is also represented by an edge in the
hypergraph, where the contribution of the couple is one and the contribution of the hospital is two, since
the couple applies for two positions at the hospital.

Regarding the preferences of the hospitals over the applications, the stability definition of HRC implies
the following rankings. Suppose first that hospital hp has to decide between two combined applications,
say [(ai, aj) → (hp, hp)] and [(ak, al) → (hp, hp)], where aj is higher ranked than ai and al is higher
ranked that ak. In this case hp will decide according to the worst candidates of these couples, so it would
prefer the first application if and only if ai is higher ranked than ak. Now, let us consider how the hospital
would choose between a resident ai applying in a single or joint application and a pair of residents (aj , ak)
applying in a combined application, where ak is higher ranked by hp than aj . Again we suppose that
hp will decide according to its ranking on the weakest candidates, it will prefer the application involving
ai if and only if ai is higher ranked than aj by hp. Again, it is possible that indifferences occur in this
preference order between a joint application and a combined application from the same couple, but as
previously we suppose that the hospital breaks these ties according to the couple’s preferences.

It is again easy to see that an integral stable allocation of the ISAC instance corresponds to a stable
matching of the HRC instance, where the edges with unit values represent the accepted applications,
since a blocking coalition for the HRC instance would be a blocking edge in the ISAC instance. �

Note that the reverse of the above theorem is not true. A stable matching for a HRC instance might
not be an integral stable allocation for the corresponding ISAC instance. This is because in the HRC
stability definition it is possible that a combined application is rejected as there is only one place left at
a hospital, but a less preferred single or joint application is accepted for that last place. This kind of
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stable matching cannot be translated to a stable allocation as the rejected combined application would
emerge as a blocking edge.

When combined applications are allowed then there may be different reasonable stability concepts.
Our transformation described in Theorem 2 works as long as the hospitals can rank the applications, and
from these strict preferences we may derive the hospital choice functions over the set of of applications
in a quota-responsive way. The latter means that from a set of applications a hospital accepts the best
applications one by one, as long as the acceptance of an application does not violate its quota.

Finally we note that if every hospital has one position only then we get a simple stable matching
problem for a hypergraph, which is also known as a (hedonic) coalition formation game. It is worth
mentioning that the NP-hardness results [14], [4] hold for this simple case as well. Let us now illustrate
the usage of the Scarf algorithm for a particular instance of HRC of this simple kind.

Example

This example was given by Biró, Irving and Schlotter [4] as a difficult instance, for which most heuristics
currently used in real applications would fail to find the unique stable solution. Suppose that we have
eight residents, comprising three couples (a1, a5), (a2, a4) and (a6, a8) together with two single applicants
a3 and a7. There are eight hospitals, h1, . . . , h8, each with just one post. Suppose that the residents
are ordered in the same way by every hospital, according to their indices (a1 best, a8 worst), and the
individual and joint preference lists of the residents are as follows.

a3 : h1 h5

a7 : h6 h8

(a1, a5) : (h1, h2) (h3, h6)
(a2, a4) : (h4, h5) (h1, h2) (h3, h7)
(a6, a8) : (h6, h8)

We can describe this problem as a stable matching problem for a hypergraph, where the individual
applicants, the couples and the hospitals are represented by vertices, and each hyperedge corresponds to
an application (either to an individual application or to a joint application).

To avoid degeneracy and ensure a deterministic invocation of the Scarf algorithm, vector b representing
the vertex-bounds should be perturbed (see more about this issue in [3]). We tried to solve the above prob-
lem with the Scarf algorithm by using two different perturbations. First we set b̃i = bi+εi = bi+1/p101−i,
where pi is the i-th prime number, and we obtained the following half-integral solution:

x([a3 → h3]) = 0, x([a3 → h5]) = 1, x([a7 → h6]) = 1
2 , x([a7 → h8]) = 1

2 , x([(a1, a5)→ (h1, h2)]) = 1,
x([(a1, a5) → (h3, h6)]) = 0, x([(a2, a4) → (h4, h5)]) = 0, x([(a2, a4) → (h1, h2)]) = 0, x([(a2, a4) →
(h3, h7)]) = 1, x([(a6, a8)→ (h6, h8)]) = 1

2 .

However, by setting b̃i = bi + εi = bi + 1/p101+i, where pi is the i-th prime number, we obtained

x([a3 → h3]) = 0, x([a3 → h5]) = 1, x([a7 → h6]) = 0, x([a7 → h8]) = 1, x([(a1, a5)→ (h1, h2)]) = 0,
x([(a1, a5) → (h3, h6)]) = 1, x([(a2, a4) → (h4, h5)]) = 0, x([(a2, a4) → (h1, h2)]) = 1, x([(a2, a4) →
(h3, h7)]) = 0, x([(a6, a8)→ (h6, h8)]) = 0,

which corresponds to the unique stable matching for this instance, namely

M = {〈a1, h3〉 , 〈a2, h1〉 , 〈a3, h5〉 , 〈a4, h2〉 , 〈a5, h6〉 , 〈a7, h8〉}.

Therefore this example also illustrates that different perturbations may result in different stable
allocations with the possibility that some of them are integral and some are fractional solutions.
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3 Experimental comparison of heuristics

In the redesign of the NRMP, Roth and Peranson [16] constructed a heuristic method that incorporates the
admission of couples. Motivated by the redesign of the Scottish resident allocation scheme, Biró, Irving
and Schlotter [4] implemented some more complex heuristics and compared them with some variants
of the Roth-Peranson method. Finally, we also implemented the Scarf algorithm, and used it as a new
heuristic to solve HRC, as described in the previous section. We conducted simulations on the same
instances that Biró, Irving and Schlotter [4] studied. But we shall note that the Scarf algorithm was
implemented in a different platform and so we did not compare its running time with the other heuristics
studied in [4]. For each run of the Scarf algorithm we used one perturbation only. (It is question for
future research whether different perturbations can result in significantly different stable allocations for
random or structured instances). The table below summarises our findings.

Number of couples

Algorithm 12 25 50 75 100 125 150 175 200 225 250

Roth-Peranson 952 897 701 547 395 277 170 83 41 9 3

Best heuristics in B-I-S 976 958 911 870 811 752 682 546 281 71 10

Scarf (int. solution) 895 813 649 532 426 356 316 261 202 174 158

Scarf half-int. solution 999 997 978 958 918 859 816 777 692 695 588

Scarf frac. solution 105 187 351 468 574 644 684 739 798 826 842

Av. # of frac. weights 3.9 4.8 5.7 6.7 7.6 8.8 10.0 10.8 12.8 13.5 15.7

# of frac. weights = 1 41 61 104 127 119 126 106 114 97 85 69

# of frac. weights = 2 2 9 21 30 36 41 43 43 44 48 41

# of frac. weights = 3 14 14 29 38 38 33 35 44 29 36 22

# of frac. weights = 4 7 18 19 25 40 37 39 38 30 32 41

# of frac. weights = 5 11 19 18 25 33 42 34 30 40 28 30

Table 1: Randomly created instances with couples for 500 residents.

In this experiment there were 500 residents and the proportion of couples varied from 5% to 100%.
For each proportion of couples there were 1000 random instances generated and we counted how many
instances each variant could solve. We remark that we do not know how many of these random instances
were actually solvable. Note also that for the set of heuristics by Biró, Irving and Schlotter the results
given in the table are not for a single heuristic, but they are always for the heuristic which performed
best on the corresponding set of parameter values.

The table shows that the heuristics by Biró, Irving and Schlotter [4] obtained a much better success
ratio than the Roth-Peranson heuristics, especially for high proportions of couples. But surprisingly, the
Scarf-algorithm was much better than the others when (almost) all the applicants form couples. As we
have already noted, this situation occurs in some applications, such as the Hungarian higher education
matching scheme (where many applicants apply for a pair of studies).

For completeness, we also included some statistics for those instances that the extended Scarf algo-
rithm could not solve. In particular, we listed how many times the Scarf heuristic returned half-integer
solutions (that may be interpreted as half-time contracts), and for how many instances the solution con-
tained only one, two, three, four or five fractional weights. The latter properties of the fractional solutions
indicate how far they were from being integral. In particular, having one single fractional weight in a
stable allocation must imply that a combined application has half weight, meaning that these two resi-
dents would get two half-time jobs in a hospital. In this case, if we would omit the couple and reduce the
capacity of that hospital by one then the remaining matching would be stable for the reduced instance.
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Further notes

In this paper we showed how the original Scarf algorithm may be used as a successful heuristic for solving
the Hospitals Residents problem with Couples, that is a relevant problem in many practical applications.
There are still a number of interesting questions that would be worth investigating in extension to our
work presented. How does the Scarf algorithm work for the particular case of HRC? Is there some more
efficient way to run this algorithm for HRC than the original matrix method? What are the possible
effects of the perturbations used in the Scarf algorithm? If the Scarf algorithm returns a fractional
solution, can we approximate an integral solution from that?

We also believe that the stable allocation problem with contributions may accommodate many further
relevant problems, and so the Scarf algorithm and its extensions are worth considering as heuristics for
solving other problems as well.
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[3] P. Biró and T. Fleiner. Fractional solutions for capacitated NTU-games, with applications to stable
matchings. Discussion Paper, IE-RCRES-HAS, MT-DP 2012/34, 2012.
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