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Introduction

I Public education in the the US and around the world is
increasingly characterized by centralized finance.

I Last decades school choice has been expanded around the
globe.

I Standard Tiebout models do not characterize our public
finance realities.

I (and maybe they shouldn’t!: Calabrese, Epple and
Romano (RES2012)).
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Two disconnected literatures in the economics of
education:

1) Multicommunity models of local public goods provision

I generally children go to the community school (starting
with Tiebout 1956).

I same public resources are devoted to each school, focus on
peer quality (starting with Epple and Romano (2003)).

I private schools reduce segregation in neighborhoods
(starting with Nechyba (1999)).

I when free choice is introduced it is assumed that public
school quality is the same in all school (Epple and
Romano (2003)).
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2) Mechanism design literature on school choice
(Abdulkadiroglu and Sonmez (2003))

I Families submit a ranking of schools and overdemands in
a school are resolved through priority orders and specific
rules (mechanisms).

I Preferences, school quality, priorities are exogenous.

I Focus on strategy proofness, stability and efficiency within
this framework.
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This paper

I Embeds the mechanism design problem in a
multi-community model with public schools;

I endogenizes school quality;

I endogenizes neighborhood priorities;

I studies the effect that the specific mechanism and
priorities used have on school and neighborhood
segregation:

I neighborhood priorities vs random priorities.

I Boston vs Deferred Acceptance (DA) mechanisms.

I studies the effects of private schools on the allocation of
children within the public school system.
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Main results I

I Priorities for local residents lead to full segregation across
neighborhoods and schools, both under Boston and under
DA.

I When no priorities for neighborhood:
I under DA, no segregation across neighborhoods or schools,
I under Boston, school segregation under some strong condition.
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Main results II

I With private schools:
I Under DA, partial school segregation and a hierarchy of

qualities emerge.

I Under Boston, back to segregation in schools; higher types
increase their chances to access the best school.

I The specifics of the mechanism have large effects on
school and neighborhood segregation and quality.

I The presence of private schools conditions the allocation
within the public school system, affecting parents’
submitted list.
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The Model

I Set I households of mass 1, i (measure φ).

I Households differ in single dimension t ∈ [0, 1] (income or
ability).

I Districts have a fixed supply of homogenous houses,
available at a price rj.

I City divided into three districts: j = 1, 2, 3.

I Let Qj be the set of households that go the school in
district j, where ηj = |Qj|:

I qj ≡ E [t |t ∈ Qj ] ,∀j

I School capacity ηj = 1
3
∀j.
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Preferences

I xi numeraire good

I hi(qj, ti), human capital

u(xi, qj) = xi + hi(qj, ti)

A1 : h increasing and concave, h′q, h
′
t ≥ 0, h′′qq ≤ 0,

A2 : h is supermodular, h′′qt ≥ 0,

I At some points of the analysis we will also require:

A3 : h3 = h(q3, t)−∆, with
∆ > ∆∗ = h(qmax, t̄)− h(qmin, t̄).

I A3 captures the ghetto effect mentioned in the
introduction.
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Boston Mechanism

I Parents submit list with preferences, ranking schools.

I Initially, all applicants are allocated their first choice.

I If demand ≥ supply for a school, then “points” are
assigned (siblings, socioeconomics, priority area). Families
with most points have priority. Ties are randomly decided.

I For accepted applicants, allocation is final. Rejected
applicants opt for the next school in their submitted
ranking that has a free seat after the previous round.

I If, again, demand ≥ seats left, points decide (or random
draws).

I And so on until everybody is allocated a seat.

⇒ telling the truth is not a dominant strategy.
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Gale- Shapley Deferred Acceptance (DA)

I Parents submit list with preferences, ranking schools.

I Initially, all applicants are allocated their first choice.

I If demand ≥ supply for a school, then “points” are
assigned (siblings, socioeconomics, priority area). Families
with most points have priority. Ties are randomly
resolved.

I Applications are only preaccepted.

I A rejected applicant applies for the next school in its list
and competes for seats against pre-accepted applicants.

I The assignment is final when no applicant is rejected.

⇒ being truthful is a dominant strategy: households submit
(q1, q2, q3) if q1 > q2 > q3

11
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Residential priorities

I Suppose the system warrants residential priorities to local
residents.

Lemma
Consider a partition T1, T2, T3 of households across districts
that yields q̂1 > q̂2 > q̂3, where ηj = |Tj| ∀j. Then both with
BM and DA ranking the local school first is an undominated
strategy for every household.
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Residential priorities

Theorem
Under A1-A2, and both with BM and DA, there exists a
unique equilibrium with q̂1 > q̂2 > q̂3; T1 = (b, 1]; T2 = [a, b]
and T3 = [0, a), where where ηj = |Tj|. Equilibrium rents are
r3 = 0; r2 = h(q2, a)− h(q3, a) and
r1 = r2 + h(q1, b)− h(q2, b).
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Residential priorities

I These equilibria resemble the equilibrium in Epple and
Romano (2003).

I A hierarchy of school qualities emerges due to the peer group
effect.

I Housing rents make cut-off types (t = a and t = b) indifferent
between districts 2,3 and 1,2 respectively.

I The ghetto emerges endogenously.

I The theorem reveals that school choice mechanisms have
no effect when schools have residential priorities.
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DA without priorities

Lemma
If schools do not have priorities, any allocation of households
to districts that clears the housing markets with rents
r1 = r2 = r3 = 0 is an equilibrium of the location stage.

The next theorem shows that DA cannot generate segregation
across schools.

Theorem
With DA no equilibrium with school quality differentials
q1 > q2 > q3 or segregation exists.
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DA without priorities

I Is there an equilibrium with no school segregation? Yes.

I If agents believe that q1 = q2 = q3 they may all rank
school 1 first, school 2 second and school 3 last so that
q1 = q2 = q3 ex post.

I Moreover, this equilibrium is sequential: one can construct
a sequence of beliefs (qn1 , q

n
2 , q

n
3 ), n = 1, 2...→ (q1, q2, q3)

with qn1 > qn2 > qn3 ) such that the best response profile
always consists of everyone ranking school 1 first, school 2
second and school 3 last.
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BM without priorities

I We next illustrate that BM can originate segregation
across schools even when no priority criteria are used and
there are no transport costs.

I As before, the housing market does not generate any kind
of segregation across districts and differences in quality
across schools do not create differences in housing rents.

I Existence of equilibrium with school segregation requires
one of the schools to be ex-ante perceived as the worst by
every household.

I That is, it requires the existence of a sufficiently bad
exogenous ghetto school.
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BM without priorities

I In that case, should school 3 be ranked in a position other
than last, the chances of going to the ghetto school would
be increased, and the chances to go to any other school
would be reduced.

I Hence, parents can restrict attention to the school they
rank first and the relevant strategy space has only two
elements;

I Strategy 1: Put school 1 first, school 2 second
I Strategy 2: Put school 2 first
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BM without priorities

I Consider an equilibrium in BM such that q1 > q2.

I Let ms denote the mass of parents using strategy s and
note that m2 = 1−m1.

I Clearly, in equilibrium, m2 < 1/2 < m1. That is, the
chances to be admitted in school 2 must be greater than
the chances to be accepted at school 1 (otherwise all
parents would rank school 1 first).

I There are two cases to consider:

I Case 1: Both schools 1 and 2 give all their slots in the first
round of the assignment procedure (m2 ≥ 1/3).

I Case 2: School 1 gives all its slots in the first round of the
assignment procedure while school 2 does not (m2 < 1/3).
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BM without priorities

I Case 1: Parents playing strategy s have a probability
1/3ms of having their child accepted at school s,
1− 1/3ms of having their child assigned to school 3 and
zero chance at the remaining school.

I The expected utility of parents playing strategy s is:

V (s) =
1

3ms

h (qs, t) +

(
1− 1

3ms

)
(h (q3, t)−∆) (1)

I They will play strategy 1 if V (1) > V (2), which can be
written as:

h(q1, t)− h(q3, t) + ∆

h(q2, t)− h(q3, t) + ∆)
>
m1

m2

(2)
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BM without priorities

I Lemma
Under assumptions A1-A3 the LHS of (2) is increasing in t.

I The lemma implies the following single-crossing condition:

I If a t-type parent chooses strategy 1 and t′ > t, a t’-type
parent also chooses strategy 1.

I Likewise if a t-type parent chooses strategy 2 and t′ < t, a
t’-type parent also chooses strategy 2.

21



BM without priorities

I Lemma
Under assumptions A1-A3 the LHS of (2) is increasing in t.

I The lemma implies the following single-crossing condition:

I If a t-type parent chooses strategy 1 and t′ > t, a t’-type
parent also chooses strategy 1.

I Likewise if a t-type parent chooses strategy 2 and t′ < t, a
t’-type parent also chooses strategy 2.

21



BM without priorities

I Lemma
Under assumptions A1-A3 the LHS of (2) is increasing in t.

I The lemma implies the following single-crossing condition:

I If a t-type parent chooses strategy 1 and t′ > t, a t’-type
parent also chooses strategy 1.

I Likewise if a t-type parent chooses strategy 2 and t′ < t, a
t’-type parent also chooses strategy 2.

21



BM without priorities

I Lemma
Under assumptions A1-A3 the LHS of (2) is increasing in t.

I The lemma implies the following single-crossing condition:

I If a t-type parent chooses strategy 1 and t′ > t, a t’-type
parent also chooses strategy 1.

I Likewise if a t-type parent chooses strategy 2 and t′ < t, a
t’-type parent also chooses strategy 2.

21



BM without priorities

I This suggests an equilibrium characterized by a threshold
t̃, (with 1/2 > Φ(t̃) ≥ 1/3)) such that types above it play
strategy 1 and types below play strategy 2.

I Hence, m1 = 1−Φ(t̃) and m2 = Φ(t̃) and we can use (2)
to write that threshold as:

h
(
q1, t̃

)
− h

(
q3, t̃

)
+ ∆

h
(
q2, t̃

)
− h

(
q3, t̃

)
+ ∆

=
1− Φ(t̃)

Φ(t̃)
(3)
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BM without priorities

I Case 2: Parents playing strategy 2 have their child
accepted at school 2 with certainty, obtaining h(q2, t).

I Parents playing strategy 1 have their children assigned to
school 1 with probability 1/3m1, to school 2 with

probability m1−2/3
m1

and to school 3 with probability

1/3m1.

I Their expected utility is:

V (1) =
1

3m1

h (q1, t)+
m1 − 2/3

m1

h (q2, t)+
1

3m1

(h (q3, t)−∆)

(4)
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BM without priorities

I And they will play strategy 1 if V (1) > V (2), or:

h (q1, t) + h (q3, t)−∆

h (q2, t)
> 2 (5)

I Lemma
Under assumptions A1-A3, the LHS of (4) is increasing in t.

I The lemma implies preferences satisfy the relevant
single-crossing property and suggests again an equilibrium
characterized by a threshold t̃, (with Φ(t̃) < 1/3) such
that types above it play strategy 1 and types below play
strategy 2.

I The threshold is now given by:

h
(
q1, t̃

)
+ h

(
q3, t̃

)
−∆

h
(
q2, t̃

) = 2 (6)
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BM without priorities

Theorem
Under assumptions A1-A3, there is an equilibrium in the
Boston Mechanism with no priorities nor private schools with a
strategy profile characterized by a threshold t̂ ∈ (t, t′) such
that all types above the threshold rank school 1 first and all
types below rank school 2 first. School 3 is ranked last by
every type. If Φ(t̂) ≥ 1/3 this equilibrium brings full
segregation between schools 1 and 2. Segregation is partial if
Φ(t̂) < 1/3. Moreover, this equilibrium is sequential. If ∆ is
high enough, this sequential equilibrium is unique and entails
full segregation.
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BM without priorities

I School segregation arises because of decreasing
risk-aversion over school quality: higher types are more
willing to play the riskier strategy 1.

I The (exogenous) ghetto must be sufficiently bad to
ensure that:

I utility derived from school 3 is below that derived from school
2 for every household.

I the relevant single-crossing condition is satisfied.
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No priorities with private schools: BM

I Households need not stay in the public system, can access
a school of quality qp by paying a price p.

I Given the assignment in the public system, households
can decide to go to private school.

I We assume that if assigned to the best school no
individuals would go to private school.

Lemma
If A1− 2 hold, if a household t prefers sp to s2 or sp to s3,
then so does household with t′ > t (single-crossing wrt to
private school).
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No priorities and private schools: BM

I Let t2 be the type indifferent between school 2 and paying
for a private school.

I Similarly, let t3 be the type indifferent between school 3
and paying for a private school.

Lemma
For all ∆ > ∆∗, t2 > t3.

Lemma
For all t > t2, applying only to s1 is the (weakly) dominant
strategy.

Lemma
For all t < t3, applying to s1 provides lower expected value
than in the model without private schools. That is, if
t = t̃ < t3, applying for s2 will be a best response.
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No priorities and private schools: BM

Theorem
For any ∆ > ∆∗, there are two prices of the private school, p∗

and p∗∗ > p∗, such that for all p ∈ [p∗, p∗∗] there exists an
equilibrium in BM without priorities with segregation across
schools. The equilibrium is characterized by a threshold type
t̃priv such that households with t ≥ t̃priv play strategy 1 and
those with t < t̃priv play strategy 2. In equilibrium
qpriv1 > qpriv2 . Moreover, if t3 > t̃ then t̃priv > t̃.

Corollary

In the equilibrium with private schools, if t3 > t̃ then
qpriv1 > q1, qpriv2 > q2, and rich types have higher probability of
accessing the best school.
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No priorities and private schools: DA

I Equilibrium behavior will never be affected by the
existence of private schools.

I All students are randomly allocated to each of the
schools.

I But only those t < t3 accepted in s3 stay, those t < t2
accepted in s2 stay, and all the accepted in s1 stay.

I Hence, qpriv1 > qpriv2 > qpriv3 ;

I if t2 > 1, then q1 = q2 > q3.

I The probability of entering each school, in equilibrium, is
independent of t.
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Robustness analysis: Reserving a share of school places to
residents

I In schools of municipalities such as Boston the
walking-zone priority is applied to half of the available
slots.

I The specifics of how these seats are assigned matters (first or
second, using the same lottery or not).

I In particular if neighborhood seats are assigned first and a
single lottery is used, no effect (also in Dur, Komminer,
Pathak, Sonmez (2012)).

I But if done using different lotteries or assigning open
seats first, then

I we find that perfect residential segregation, partial school
segregation and a quality hierarchy emerge when schools
reserve a positive proportion of seats to local residents.
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Conclusions

I If priorities for residence, both mechanisms lead to
Tiebout equilibria with segregation in neighborhood and
schools.

I Without priorities: no segregation in neighborhoods.

I DA leads to no segregation in schools.
I BM leads to segregation in schools.

I Without priorities and with private schools:
I DA partial segregation in schools.
I BM larger segregation in schools and with increased access for

richer students to good public schools

I Partial priorities can lead to Tiebout in neighborhoods,
partial segregation in schools.

I Boston is more vulnerable to the details of the choice
problem and can easily lead to segregation.
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