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Abstract

We analyze a problem of college admissions with incomplete information about
student skills. Colleges with observable qualities and students with private informa-
tion are matched according to a decentralized mechanism where students can signal
their abilities with costly observable signals. We characterize a separating symmetric
equilibrium of this game where the number of potential matches is maximized and
the best students enroll at the best colleges. Our closed form characterization allows
us to conduct meaningful comparative statics analyses. We show that the e�ect of a
change in the underlying parameters of the model is not symmetric across students.
For instance, an increase in the number of students leads low skilled students to de-
crease the investment in signaling while high skilled students may increase it. Similar
patterns arise when we analyze a change in the number of school places or college
qualities. Finally, we analyze the gains of the signaling process by comparing equilib-
rium payo�s between this separating equilibrium and a pooling equilibrium with no
signaling. Among other results, we show that under certain distributions of skills, a
large enough demand for school places leads all colleges to get positive gains.

Keywords: College admissions, decentralized matching, incomplete information, coordination
problems, costly signaling.
JEL Classi�cation: D, C72, C78.

1 Introduction

A decentralized college admissions process is associated with coordination problems. This
not only means that some agents may end up unmatched, but also that the mechanism
may be ine�ective to assign the best students to the best colleges. Not only the grade coor-
dination among agents could explain these ine�ciencies but also the presence of incomplete
information. College qualities seem to be observable for all agents, however students' abili-
ties are rather private information. This implies that colleges with observable qualities may
face big indi�erences among applicants depending on available information about student
abilities. These indi�erences may lead colleges to accept applicants already accepted by
better colleges and remain unmatched depending on the choice of students.

∗Department of Economics. C/ Madrid, 126, Getafe (Madrid, Spain). E-mail: astorres@eco.uc3m.es

1



The literature on this issue shows that some simple matching mechanisms alleviate
the e�ects of coordination problems in complete information environments.1 These mech-
anisms exhaust the possibility of matching agents in a stable fashion and under certain
conditions they also maximize the number of potential matches of the problem. Some of
these matching mechanisms assure the stability of equilibrium assignments by restricting
students to send only one application.2 When agents can send multiple applications, un-
stable assignments may end up in equilibrium. However, it is easy to restore the stability
of equilibrium matches by introducing a small application cost (Triossi, 2009). If the appli-
cation cost is negligible, leading students to submit multiple applications, some dynamic
mechanisms result e�ective to get stable equilibrium assignments.3 As you can see, in
environments with complete information it is relatively easy to guarantee the stability of
equilibrium assignments and alleviate the problem of coordination of college admissions.

In contrast, in incomplete information environments we require additional conditions
to alleviate the problem of coordination. In this setting, the role of signaling seems to be
crucial to understand how colleges and students match each other in college admissions.
For instance, Coles, et. al. (2010) introduce a cost-free signaling mechanism in decentral-
ized matching problems with incomplete information about agents' preferences. Among
other desirable properties, in equilibrium this mechanism increases the expected number
of matches and the welfare of agents who signal their preferences. However, a cost-free
signaling mechanism is not very realistic in decentralized college admissions. For instance,
most selective colleges and universities in the US require a set of signals for college admis-
sions. The test scores of either the SAT or ACT,4 essay questions, recommendation letters
and personal interviews are the most important requirements. A costly signaling model
seems to be a good approach to analyze this problem, since a student has to spend signif-
icant amounts of e�ort (and money) in order get better signals and improve his chance of
enrolling at college.

In this paper, we analyze a matching problem where students want to enroll at colleges
with observable qualities. Student abilities are private information, however all agent
know the prior distribution of student skills. In this setting, students want to enroll
at the best universities while colleges want to enroll high skilled students. Agents are
matched according to a simple decentralized matching mechanism calledCostly Signaling
Mechanism (CSM) which runs in two stages. In he signaling stage, students choose
a costly observable score to signal their abilities. In the matching stage, colleges and
students are matched according to a simple two-stage matching process. First, colleges
simultaneously make one o�er to a student; and after that, students collect their o�ers and
simultaneously choose one o�er among the available ones. The CSM induces an extensive
form game that is characterized by an equilibrium assignment and a signaling strategy.

In order to understand the e�ects of the presence of incomplete information in college
admissions, we analyze the benchmark matching problem with no signaling. In this setting,
all students are ex-ante identical, since colleges only know the prior distribution of student

1These mechanisms are simple in the sense that they consist in only two stages. In the �rst stage,
agents on one side of the market send (simultaneously) a proposal to the agents on the opposite side of
the market. In the second stage, agents collect their o�ers and accept or reject (simultaneously) of of the
available proposals.

2See Alcalde, Perez-Castrillo and Romero-Medina (1998) and Alcalde and Romero-Medina (2000).
3See Sotomayor, 2003; Romero-Medina and Triossi, 2010; and Haeringer, G. and Wooders, M., 2011.
4The SAT (Scholastic Assessment Test) and the ACT (American College Testing) are the most impor-

tant standardized tests for college admissions in the USA.
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abilities. Under these conditions, we characterize a symmetric equilibrium of this game
whose agents' payo�s depend on the number of students, the expected value of student
skills and colleges' qualities. This equilibrium has several interesting implications. First
of all, in equilibrium colleges expect to enroll average students, since the matching process
does not provide any additional information about student abilities. Secondly, we �nd
that the probability of enrolling a student is decreasing in college qualities. Then only
the highest quality college �lls its school seat with probability one while the rest of agents
may end up unmatched with positive probability. Finally, we show that an increase in the
number of students increases colleges' payo�s while students' payo�s decrease.

Our main results regard with the analysis of a separating symmetric equilibrium of the
game induced by the CSM where all students play according to the same signaling strategy.
To sustain this separating equilibria, we consider a set of beliefs by which higher scored
students are associated with higher skills. Under these beliefs, colleges form an interim
ordinal preference relation on the set of students by which they prefer to enroll higher scored
students. This implies that for each pro�le of student scores, there is unique equilibrium
assignment in the matching stage of the CSM that is consistent with these beliefs. This
equilibrium assignment is assortative, i.e. the highest scored student is matched with the
best college; the second highest scored student is matched with the second best college;
and so on.

In the signaling stage of the CSM, students take as given the assortative assignment
of the matching stage and play a signaling game where they choose a costly observable
score to signal their abilities. We characterize a symmetric pure strategy Nash equilibrium
of this game. This equilibrium is characterized by an strictly increasing and continuous
di�erentiable signaling strategy that depends on student skills. In equilibrium, no pair of
students choose the same score then this symmetric signaling equilibrium induces a unique
equilibrium matching that is assortative with respect to the true student skills. Hence in
this separating equilibrium, the highest skilled student is matched with the best college;
the second highest skilled student is matched with the second best college; and so on.
Further, in this equilibrium the CSM it is maximized the number of potential matches and
agents are induced to match e�ciently in the sense that the best students enroll at the
best colleges.

Our closed form characterization allows to conduct meaningful comparative static anal-
yses on this separating equilibrium. Our main result shows that the e�ect of a change in
the underlying parameters of the model is not symmetric across students, since they de-
pend on student abilities. The �rst comparative statics exercise regards with the e�ect of
a change in the number of students. An increase in the number of competitors (students)
a�ects the probability of enrolling at college. This e�ect is not symmetric, since a low
skilled student has a decrease in this probability while a high skilled student may has an
increase. We show that an increase in the number of students leads low skilled students to
decrease the investment in signaling while the high skilled students may increase it. To un-
derstand this result consider the following intuitive argument, a low skilled student should
beat N − k competitors to get a place at college ck. When the number of competitors
increases to N ′ > N , this student not only should beat N ′−k competitors to get the same
school place but also has a big probability of facing new high skilled competitors. On the
other hand, it is clear that a high skilled student should also beat more competitors to
enroll at college but at the same time he has a small probability of facing new high skilled
competitors. Hence, these two opposite e�ects may lead high skilled students to increase
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their probability of enrolling at college.
This result explains an interesting empirical fact in real-world college admissions. In

the US is observed a decline in the mean SAT scores as the participation rate increases.5

According to the College Board,6 the mean SAT scores declines because more students of
varied academic backgrounds are represented in the pool of test-takers. It is clear that
this interpretation only considers the positive correlation between the SAT and students
abilities to argue that an increase in the number of applicants systematically decreases the
proportion of good test-takers in population. Our results suggest an alternative explanation
based on the underlying signaling game of the problem. According to our model, an
increase in the number of competitors not only leads low skilled students to decrease the
investment in signaling but also increases the proportion of people who decide to do it.
Then an increase in the number of competitors will eventually lead students to reduce the
average investment in signaling with no change in the distribution of student abilities.

We also analyze the e�ect of a change in the number of school places and a change
in college qualities on this equilibrium signaling strategy. These two experiment have
very similar implications, and as in the previous case, the e�ect of these experiments is
not symmetric across students. In particular, we show that an increase in the number of
school places (in college qualities) leads low skilled students to increase the investment in
signaling while the high skilled students may decrease it.

Finally, we analyze the gains of the CSM which are de�ned in a natural way as the
di�erence in equilibrium payo�s between the separating signaling equilibria of the CSM
and a symmetric equilibria of the college admissions problem with no signaling. We show
that students' gains are strictly increasing with respect to student skills. However, this
property of students gains does not guarantee students to avoid potential losses. Further, it
is possible to show that under certain distributions of skills all students can have negative
gains.

On the other hand, colleges' gains depend on expected values of order statistics. In
general, this is a di�cult issue, since for most distributions there are no closed form solu-
tions for moments of order statistics. Thus, we analyze the particular case of exponentially
distributed skills that allows us to calculate a closed form solution for colleges' gains. Even
when the exponential model is a very particular case, it has very interesting implications.
First of all, colleges' gains are monotone increasing in college qualities, i.e. the best college
has the greatest gains; the second best college has the second greatest gains; and so on.
Second, colleges' gains are monotone increasing in the number of students, i.e. all colleges
bene�t from an increasing demand for school places. Finally, we show that a su�ciently
large demand for school places leads all colleges to get positive gains.

The rest of the paper is organized as follows; in Section 2, we describe the basic model
and de�nitions; in Section 3, we analyze the benchmark college admissions problem with
no signaling; in Section 4, we introduce CSM and equilibrium characterization; in Section
5, we conduct our exercises of comparative statics; in Section 6, we analyze the gains of the
CSM; we present some conclusions in Section 7. Finally, all proofs are in the Appendix.

5California Postsecundary Education Commission (CPEC), �SAT Scores and Participation Rate� at
http://www.cpec.ca.gov/StudentData/50StateSATScores.asp.

6�43% of 2011 College-Bound Senior Met SAT College and Career Readness Benchmark� at
http://press.collegeboard.org/releases/2011/43-percent-2011-college-bound-seniors-met-sat-college-and-
career-readiness-benchmark
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2 The model

There are M ≥ 1 colleges and N students such that M ≤ N . Let C = {c1, c2, ..., cM}
denote the set of colleges with typical agent c ∈ C and let S = {s1, s2, ..., sN} denote
the set of students with typical agent s ∈ S. Each college c ∈ C is characterized by an
observable parameter vc > 0, which is interpreted as the quality of the college c. With some
abuse of notation, we use vj to denote the quality of the college cj . In order to simplify,
we usually say �the student i� instead of �the student si� and �the college j� instead of �the
college cj�. We assume without lost of generality (w.l.g) that colleges' qualities satisfy the
following condition, v1 ≥ v2 ≥ ... ≥ vM .

Each student s ∈ S is characterized by a parameter αs ∈ [0, w] that denotes his
skills or academic abilities. We say that a student s is more skilled than a student s′

whenever αs > αs′ . Students' skills are private information, this implies that only the
student s ∈ S knows the realization of his own parameter αs. We assume that student
skills are independently and identically distributed on some interval [0, w] according to a
strictly increasing and continuous di�erentiable cumulative distribution function F such
that F (0) = 0 and F (w) = 1.7 The distribution F has a continuous density f = F ′ that
satis�es f (α) > 0 for all α ∈ (0, w). All elements of the model are common knowledge, i.e.
the distribution of skills F ; the number of students and colleges; and colleges' qualities.

2.1 The matching problem

For simplicity, we focus on the simplest one-to-one matching problem,8 i.e. each college
has only one available school seat. In this setting, an assignment is a matching between
colleges and students which is a mapping that speci�es a partner for each agent, allowing
the possibility that some agents remain unmatched. Formally

De�nition 1 A matching µ is a mapping from the set S ∪ C onto itself such that:

1. If µ (s) 6= s then µ (s) ∈ C;

2. If µ (c) 6= c then µ (c) ∈ S; and

3. µ (s) = c if and only if s = µ (c).

According to this de�nition, a student (college) with no partner is matched with himself
(itself). In order to simplify, each student (college) get an utility equal to the quality (skills)
of the partner. Let Us (µ) and Uc (µ) be the utilities of the student s and the college c,
respectively, under the matching µ. Then each student s ∈ S has a payo�,

Us (µ) =

{
vc if µ (s) = c.
0 Otherwise

(1)

Each college c ∈ C has a payo�,

7All results hold when students' parameters are independently and identically distributed on the interval
[0,∞) according to a strictly increasing and continuous di�erentiable cumulative distribution function F
such that F (0) = 0 and limF (w) = 1 as w →∞.

8The model can be easily extended to many-to-one matching problems under the assumption that
colleges form responsive preferences (Roth and Sotomayor, 1991).
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Uc (µ) =

{
αs if µ (c) = s.
0 Otherwise

(2)

We normalize the utility of the prospect of remaining unmatched to zero for colleges
and students.

In two-sided matching literature, a college admissions problem is described by a three-
tuple (S,C,�), where S is a set of students, C is a set of colleges and �= (�s1 , ...,�sN ;�c1
, ...,�cM ) denotes a pro�le of ordinal preferences. In this problem, each agent a ∈ S ∪ C
has a complete, strict and transitive preference relation �a over the set of agents on the
opposite side of the market and the prospect of remaining unmatched.

It is easy to see that each student s ∈ S has a preference relation �s over the set of
colleges and the prospect of remaining unmatched C ∪ {s}, such that: a) c �s s if and
only if vc > 0 and b) for all c, c′ ∈ C, it is satis�ed that c �s c′ if and only if vc > vc′ .
Since college qualities are observable, all students have identical ordinal preferences. In a
similar way, each college c ∈ C has a preference relation �c on the set of students and the
prospect of having a position un�lled S ∪ {c}, such that: a) s �c c if and only if αs > 0
and b) for all s, s′ ∈ S, it is satis�ed that s �c s′ if and only if αs > αs′ . Let �a denote
the weak preference relation associated with �a for each agent a ∈ S ∪ C. Thus, for any
c, c′ ∈ C , c �s c′ implies either c �s c′ or vc = vc′ . In a similar way, for any s, s′ ∈ S,
s �c s′ implies either s �c s′ or αc = αc′ .

A matching µ is individually rational whenever µ (a) �a a for all a ∈ S ∪ C. A
student-college pair (s, c) such that µ (s) 6= c blocks the matching µ if, s �c µ (c) and
c �s µ (s). A matching µ is stable if it is individually rational and not blocked by any
student-college pair. Let E (S,C,�) denote the set of stable matchings of the college
admissions problem (S,C,�).

3 The benchmark problem: College admissions with no sig-

naling

We analyze the benchmark problem of college admissions with no signaling and incomplete
information about student skills. In this setting, all students are ex-ante identical, since
colleges only know the prior distribution of student skills. So the expected value of student
abilities E [α] is the best estimation of student skills.

We consider that colleges and students are matched according to the following simple
decentralized matching mechanism in two stages.

1. O�ers: Each college c ∈ C sends one message m (c) ∈ S ∪ {c}. If m (c) = s, then
the college c is making an o�er to the student s. If m (c) = c, the college c is making
no o�er. Let O (s) = {c ∈ C : m (c) = s} ∪ {s} be the set of o�ers to the student s
(note that a student always receives an o�er from himself) ;

2. Hiring: Each student s ∈ S chooses one of his available o�ers in O (s).

Colleges and students play the game induced by this simple mechanism. In complete
information environments with strict preferences, Alcalde and Romero-Medina (2000) show
that this mechanism implements in Subgame Perfect Equilibrium (SPE) the set of
stable matchings of college admissions problems. Thus this class of decentralized matching
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mechanisms exhausts the possibility of matching colleges and students in a stable way.9

Further, under certain conditions on agents' preferences,10 this mechanism also maximizes
the number of potential matches.

In the presence of incomplete information, these results do not hold any more. The
mechanism may has many equilibria depending on the available information about student
abilities and the grade of coordination among colleges. In this section, we focus on two
�natural� equilibria of the problem, with and without coordination among colleges, whose
characterization permit us to analyze the e�ects of the presence of incomplete information
and the problem of coordination in decentralized college admissions. The explicit charac-
terization of agents' payo�s based on the number of students and colleges; college qualities
and student skills allows us to identify the e�ect of a change in one of these parameters on
equilibrium payo�s.

Before analyzing these equilibria, we argue that it is easy to characterize the equilibrium
students' behavior. Since college qualities are observable, at any possible equilibria students
must choose the best o�er among the available ones. It is clear that under any alternative
choice rule, students cannot get a better assignment. Then the rule where students choose
the best o�er among the available ones is a dominant strategy for students. We assume that
colleges anticipate this optimal students' behavior and decide their o�ers. For simplicity,
we label each student with one number from 1 to N. These labels are observable for all
agents and do not provide information about student skills.

We analyze an equilibrium situation where colleges coordinate their actions based on
students' labels. Consider a pro�le of strategies where students follow their dominant
strategy while each college cj sends one message to the student j. Let µ be the outcome
matching of this strategy pro�le. It is easy to verify that this assignment satis�es µ (cj) = j
for j = 1, ...,M while the rest of students remain unmatched, i.e. µ (j) = j for j =
M+1, ..., N . Under this assignment, each college gets a payo� equal to E [α] while students
get a payo� equal to vj for j = 1, ...,M and zero otherwise. It is easy to show that this
pro�le of strategies is a SPE of this college admissions game. First of all, note that no
student has a pro�table deviation, since students are following their dominant strategy.
Secondly, a college ck can deviate by sending a message to any student j 6= k. In this case,
the college ck either will get matched with any student j = k + 1, ..., N or will be rejected
by any student j = 1, ..., k − 1. This deviation cannot be pro�table, since all students are
ex-ante identical. Note that under this equilibria, it is maximized the number of potential
matches. This equilibrium is well de�ned for any permutation of the set of students and
further these equilibria are payo� equivalent for colleges.

Now we consider an equilibrium of this game with no coordination among colleges. We
want to show that the pro�le of strategies where students choose the best o�er among the
available ones and colleges make one o�er to each student with equal probability is a SPE
of this college admissions game.

We consider a college admissions problem with M ≥ 1 colleges and N ≥ M students.
As before, we label each student with one number from 1 to N with no information about
student skills. Assume that each college sends one o�er to each student with probability

9These results hold in problems where colleges have quotas of students providing colleges' preferences
are responsive, see Roth and Sotomayor (1991).

10When colleges have responsive preferences respect to individual preferences, the set of agent unmatched
and un�lled positions are the same at any stable matching (Roth and Sotomayor, 1990). This result implies
that this simple matching mechanism not only exhausts the possibility of matching agents in a stable way,
but also maximizes the number of potential matches when colleges have responsive preferences.
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(i.e. 1
N ), we want to show that no college has a pro�table deviation from this strategy.

Consider that any college cj with observable quality vj is planning to deviate from this
strategy. Note that there are j − 1 colleges with higher quality and M − j colleges with
lower quality than the college cj . Since college qualities are observable, an o�er of the
college cj always beats any o�er of the M − j lower quality colleges. Then one o�er of
the college cj will be accepted by a student i whenever every of the j − 1 higher quality
colleges make an o�er to any of the other N − 1 students.

The total number of combinations of o�ers fromM − j colleges to N students is NM−j

while total number of combinations of o�ers from j − 1 colleges to N − 1 students is
(N − 1)j−1. Since colleges do not coordinate, one o�er of the college cj will be accepted
by the students i with probability:

(N − 1)j−1NM−j

NM−1 =

(
N − 1

N

)j−1
for j = 1, ...,M. (3)

Then by making an o�er to the student i with probability 1
N , the college cj will get an

expected payo�
(
N−1
N

)j−1
E [α]. Note that this payo�s are independent of student skills,

since all students are ex-ante identical.
Now consider that the college cj is planning to deviate from this strategy by making one

o�er to each student i with probability pi 6= 1
N . It is easy to see that such deviations cannot

be pro�table, since
∑N

i=1 p
∗
i

(
N−1
N

)j−1
E [α] =

∑N
i=1 pi

(
N−1
N

)j−1
E [α] for any pi 6= 1

N such

that
∑N

i=1 pi = 1. Then the pro�le of strategies where colleges send one o�er to each
student with equal probability is a symmetric SPE of this game. In this equilibrium,
colleges' payo�s EQcj depend on the number of students, the expected value of student
skills and the rank of colleges.

EQcj =

(
N − 1

N

)j−1
E [α] for j = 1, ...,M. (4)

We deduce students' payo�s in this symmetric equilibrium. In this case, we have to
�nd the probability that each student i = 1, ..., N enrolls at college cj for j = 1, ...,M .
First of all, we know that the student i will reject any available o�er but the best one.
This implies that a student i enrolls at the college c1 with probability 1

N . It is easy to

show that , in general, a student i enrolls at the college cj with probability, 1
N

(
N−1
N

)j−1
.

Then the expected payo� of the student i = 1, ..., N is given by,

EU (N,M) =
1

N

M∑
k=1

vk

(
N − 1

N

)k−1
(5)

Since students enroll at each college with positive probability, the student payo�s are
strictly positive for anyM ≥ 1 and N ≥M and satis�es v1 > EU (N,M) > 0. In addition,

students may remain unmatched with positive probability equal to 1− 1
N

∑M
k=1

(
N−1
N

)k−1
=(

N−1
N

)M
, which is strictly positive and increasing in the number of students and decreasing

in the number of school places.
This simple model is useful to analyze the main consequences of the absence of coor-

dination in college admissions with incomplete information. First of all, for any number
of students N and school places M , all agents remain unmatched with positive proba-
bility but the highest quality college. Note that c1 �lls its vacancy with probability one
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and gets a expected payo� equal to E [α] which is the best prediction of student skills
without additional information. Second, the equilibrium assignment may be ine�cient,
since colleges only know the expected value of student skills. Further, the probability of

enrolling a students is decreasing in the rank of colleges, since the probability
(
N−1
N

)j−1
is

strictly decreasing in j. Therefore, the absence of coordination mainly damages low quality
colleges.

4 The costly signaling mechanism.

We analyze a decentralized matching mechanism called Costly Signaling Mechanism

(CSM). Under this mechanism, each student s ∈ S chooses a costly observable score Ps ≥ 0
to signal his skills. A student s ∈ S with type α who chooses a score Ps has to pay the
cost

C (α, Ps) =
c (Ps)

φ (α)
(6)

We assume that the function c (·) such that c (0) = 0 is strictly increasing, continuous
di�erentiable and convex. We also consider that the function φ (·) such that φ (0) > 0 is
strictly increasing, continuous di�erentiable and bounded in the interval [0, w].

The pro�le of student scores (Ps)s∈S is observable for all agents. Under the CSM, col-
leges and students are match according to the following decentralized matching procedure
in two stages:

1. Signaling Stage: Each student s ∈ S with parameter α chooses a score Ps ≥ 0 at
the cost C (α, Ps).

2. Matching Stage: After observing the pro�le of scores (Ps)s∈S , students and colleges
match according to the following decentralized matching process:

(a) O�ers: Each college c ∈ C sends one message m (c) ∈ S ∪ {c}. If m (c) = s,
the college c is making an o�er to the student s. If m (c) = c, the college c is
making no o�er. Let O (s) = {c ∈ C : m (c) = s} ∪ {s} be the set of o�ers of
the student s (a student always receives an o�er from himself) ;

(b) Hiring: Each student s ∈ S chooses one of his available o�ers O (s).

We focus on a symmetric and strictly separating equilibrium where all students use the
same signaling strategy. Obviously, the model can have many other symmetric equilibria.
For instance, pooling equilibria where no student invests in signaling (in this situation we
could sustain any of the symmetric equilibria analyzed in the previous section) or semi-
separating equilibria.

To sustain this separating equilibria, we consider beliefs where the higher scored stu-
dents are associated with higher academic skills. Formally, we describe these beliefs by a
continuous distribution of student skills given a score P > 0, i.e. a continuous cumulative
distribution G (α | P ). We assume that these beliefs have associated a continuous density
g (α | P ) and satisfy G (α | P ′) < G (α | P ) for all α ∈ (0, w) whenever P ′ > P . Note
that the previous condition implies that E [α | P ′] > E [α | P ] for all α ∈ (0, w) whenever
P ′ > P where

´
αg (α | P ) dα = E [α | P ]. This implies that higher scored students are

associated with higher expected skills, i.e. colleges prefer high scored students.
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The payo�s of colleges are given by the expected quality of enrollees that depends on
the outcome of the CSM (i.e. a matching between colleges and students) and the pro�le
of student scores. Given a matching µ, a college c ∈ C has expected payo� E

[
α | Pµ(c)

]
.

On the other hand, a student s ∈ S with parameter α gets payo�s vc−C (α, Ps) such that
µ (s) = c and −C (α, Ps) otherwise.

In order to simplify, we consider that after observing the pro�le of student scores
(Ps)s∈S , colleges �update� their ordinal preferences in the following way. Each college
c ∈ C forms an auxiliary preference relation �∗c over the set students and the prospect of
remaining unmatched, S ∪ {c} such that: a) s �∗c c if and only if Ps > 0 and b) for any
s, s′ ∈ S, s �∗c s′ if and only if Ps > Ps′ . This pro�le of interim preferences�∗C= (�∗c)c∈C
is consistent with beliefs G (α | P ).

At the second stage of the CSM, the pro�le of student scores is given, so colleges form
the interim preference �∗C= (�∗c)c∈C while the the signaling cost is sunk for students.
This implies that student preferences at this stage are well de�ned and coincide with the
strict preferences �S= (�s)s∈S . Assume w.l.g. that colleges have di�erent qualities, i.e
v1 > v2 > .. > vM > 0. On the other hand, assume also that students' scores satisfy
Ps 6= Ps′ for all s, s

′ ∈ S. This assumption about student scores is not strong, since in
equilibrium ties will happen with probability zero, i.e. no pair of students will have the
same skills. Then for any given pro�le of student scores (Ps)s∈S , at the second stage of the
CSM there is a well de�ned college admissions problem with strict preferences denoted by
(S,C, (�S ,�∗C)).

Note that given the beliefs G (α | P ), all colleges and students have identical and strict
preferences. Then the set of stable matchings of this problem is not empty and single
value, i.e. |E (S,C, (�S ,�∗C))| = 1. Under these conditions, we can establish the following
result.

Proposition 1 Consider the beliefs G (α | P ) such that such that G (α | P ′) < G (α | P )
for all α ∈ (0, w) whenever P ′ > P . Then for any pro�le of student scores (Ps)s∈S such that

Ps 6= Ps′ for all s, s′ ∈ S and s 6= s′, there is a unique SPE outcome in the second stage of

the CSM. This equilibrium outcome is the unique stable matching of the college admissions

problem, (S,C, (�S ,�∗C)). Further, this unique equilibrium assignment is assortative.

Only stable matchings between students and colleges are a reasonable outcomes of the
CSM (Alcalde and Romero-Medina, 1998). Further, under the interim college preferences
�∗C= (�∗c)c∈C the outcome matching is assortative, i.e. the highest scored student is
matched with the best college; the second highest scored student is matched with the
second best college, and so on.

In the following section, we analyze the signaling equilibrium of the �rst stage of the
CSM. We focus on a symmetric pure strategy equilibrium where all students play according
to the same signaling strategy. We analyze a settings withM ≥ 1 school places and N > M
students. However, the model can be easily extended to analyze any problem with the same
number of students and school places.

4.1 The signaling equilibrium

We analyze the signaling equilibrium of the �rst stage of the CSM. To characterize this
equilibrium, we take as given the outcome matching of the second stage of the mechanism.
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To illustrate the problem, we focus on the simplest case with only one college with quality
v1 > 0 and N > 1 students.

We analyze a separating symmetric Nash equilibrium of the signaling game played
by students. This equilibrium is characterized by a continuous di�erentiable and strictly
increasing signal strategy with respect to student abilities. We focus on the student 1's
problem, who chooses a score P1 to signal his skills while the rest of students play according
to a signaling strategy ρ : [0, w] → <+ which is assumed to be strictly increasing and
continuous di�erentiable in α such that ρ (0) = 0.

Since the outcome matching of the CSM is assortative, the students 1 with parameter
α gets the payo� v1 − C (α, P1) whenever P1 > ρ (αi) for all i 6= 1. This happens with

probability Pr [P1 > ρ (α2) , ..., P1 > ρ (αN )] = F
(
ρ−1 (P1)

)N−1
given that student skills

are identically and independently distributed according to F . Otherwise, the students 1

gets the payo� −C (α, P1) with probability 1 − F
(
ρ−1 (P1)

)N−1
. Hence, the expected

payo�s of the student 1 with parameter α, when the rest of students play according to the
signal function ρ (·) is:

π (α, P1) = v1F
(
ρ−1 (P1)

)N−1 − C (α, P1) (7)

The student 1 takes as given the signaling strategy of the rest of students and chooses
a score P1 to maximize his expected payo� π (α, P1). The �rst order condition (FOC) with
respect to P1 yields the following equation,

v1 (N − 1)F
(
ρ−1 (P1)

)N−2
f
(
ρ−1 (P1)

) 1

ρ′ (ρ−1 (P1))
− c′ (P1)

φ (α)
= 0 (8)

By reordering the previous expression, we have the following di�erential equation,

v1 (N − 1)φ (α)F
(
ρ−1 (P1)

)N−2
f
(
ρ−1 (P1)

)
= c′ (P1) ρ

′ (ρ−1 (P1)
)

(9)

In a symmetric equilibrium, P1 = ρ (α) then the previous di�erential equation becomes
in the following,

v1 (N − 1)φ (α)F (α)N−2 f (α) = c′ (ρ (α)) ρ′ (α) (10)

By solving this di�erential equation with the initial condition ρ (0) = 0, we �nd that
the equilibrium signaling strategy satis�es,

ρ (α) = c−1
(
v1 (N − 1)

ˆ α

0
φ (x)F (x)N−2 f (x) dx

)
(11)

The equilibrium signaling strategy ρ (·) is strictly increasing and continuous di�eren-
tiable in α. Note that ρ (·) only satis�es the FOC of the student 1's maximization problem,
which is necessary but not su�cient to characterize the signaling equilibrium. Hence, we
have to prove that the signaling strategy ρ (·) is in fact a symmetric equilibrium of this
game. The equilibrium payo� of any student with parameter α is given by,

π (α, ρ (α)) = v1F (α)N−1 − c (ρ (α))

φ (α)
(12)

It is not di�cult to show that this payo� function satis�es d
dα (π (α, ρ (α))) > 0 and

π (0, ρ (0)) = 0. We show that any alternative score P ′ 6= ρ (α) cannot be a pro�table
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deviation for any student with parameter α. Consider that a student with parameter α is
planning to choose a score 0 < P ′ < ρ (α) while the rest of students are playing according
to the signaling strategy ρ (α). Since the signaling strategy is strictly increasing in α and
satis�es ρ (0) = 0, there exists a unique α′ such that ρ (α′) = P ′. This implies that a student
who chooses an alternative strategy P ′ = ρ (α′) will get a payo�, π (α, P ′) = π (α, ρ (α′)). A
student with parameter α losses an extra payo� π (α, ρ (α))−π (α, ρ (α′)) by not deviating
to ρ (α′) = P ′. Then

π (α, ρ (α))− π
(
α, ρ

(
α′
))

= v1

(
F (α)N−1 − F

(
α′
)N−1)− c (ρ (α))− c (ρ (α′))

φ (α)
(13)

It is not di�cult to show that the extra payo�s π (α, ρ (α))−π (α, ρ (α′)) can be reduced
to the following expression,

v1

(
F (α)N−1 − F

(
α′
)N−1)− 1

φ (α)
v1 (N − 1)

ˆ α

α′
φ (x)F (x)N−2 f (x) dx (14)

Since the function φ (x) is always positive, strictly increasing in x and bounded in [0, w],
it is clear that the following inequality holds,

1

φ (α)
v1 (N − 1)

ˆ α

α′
φ (x)F (x)N−2 f (x) dx < v1

ˆ α

α′
(N − 1)F (x)N−2 f (x) dx (15)

In addition note that
´ α
α′ (N − 1)F (x)N−2 f (x) dx = F (α)N−1 − F (α′)N−1. This

last equation implies that π (α, ρ (α)) − π (α, ρ (α′)) > 0 for all α′ < α which proves that
P ′ = ρ (α′) is not a pro�table deviation. By a similar argument, it is possible to show
that any alternative score P ′′ > ρ (α) cannot be a pro�table deviation. Then the signaling
strategy ρ (α) is a symmetric equilibria of the signaling game played by students. In the
following section, we show that all of these results hold in the general case with M ≥ 2
colleges and N > M students. All proofs and calculations can be found in the Appendix.

4.1.1 The general case: N > M ≥ 2.

Now consider a general case with N students and M colleges such that N > M ≥ 2.
Assume w.l.g. that all colleges have di�erent qualities and satisfy v1 > v2 > ... > vM > 0.
As before, we analyze the student 1's maximization problem with parameter α ∈ (0, w)
while all other students play according to some signaling strategy ρM : [0,∞) → <+. As
before, we assume that the signaling strategy ρM (·) is strictly increasing and continuous
di�erentiable in α such that ρM (0) = 0.

The student 1 chooses a score P1 ≥ 0 to signal his abilities. Consider the following
notation, we say that the student 1 has a �success� whenever P1 > ρM (αi) for some student
i 6= 1 and a �failure� whenever P1 < ρM (αi) for some student i 6= 1. The probability
of having one �success� is F

(
ρ−1M (P1)

)
whereas the probability of having one �failure� is

1−F
(
ρ−1M (P1)

)
. Note that these probabilities are independent, since students' parameters

are independently distributed.
For any given number of students N ≥ M , the student 1 with score P1 enrolls at the

colleges cj with quality vj , whenever he has N − j �successes� and j − 1 �failures�. Note
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that this situation happens
(
N−1
j−1
)
di�erent times, then the probability of enrolling at the

college ck is, (
N − 1

k − 1

)
F
(
ρ−1M (P1)

)N−k [
1− F

(
ρ−1M (P1)

)]k−1
. (16)

The previous argument implies that the probability of enrolling at the college cj ∈ C
follows a binomial distribution. Hence, the expected payo� of the student 1 π (α, P1)
satis�es,

π (α, P1) =

M∑
k=1

vk

(
N − 1

k − 1

)
F
(
ρ−1M (P1)

)N−k [
1− F

(
ρ−1M (P1)

)]k−1 − C (α, P1) (17)

The student 1 takes as given the signaling strategy of the rest of students and chooses
a score P1 to maximize his expected payo� π (α, P1). In Appendix A, we solve the student
1's maximization problem in a symmetric equilibrium where all students play according
to the same signaling strategy ρM (α). We show that the signal function that satis�es
the FOC of the student 1's maximization problem characterizes this symmetric separating
equilibrium. We establish the following result,

Proposition 2 The signaling strategy,

ρM (α) = c−1

(
M−1∑
k=1

(vk − vk+1)

ˆ α

0

φ (x) f(k,N−1) (x) dx+ vM

ˆ α

0

φ (x) f(M,N−1) (x) dx

)

is a symmetric equilibrium of college admissions problems with M ≥ 2 colleges and

N > M students.

Proof. See Appendix A.
Given the equilibrium signaling strategy ρM (·), a student with parameter α will get

expected payo�s,

π (α, ρM (α)) =

M∑
k=1

vk

(
N − 1

k − 1

)
F (α)

N−k
[1− F (α)]

k−1 − c (ρM (α))

φ (α)
(18)

Note that to characterize the signaling equilibrium, we assume some desirable properties
of the equilibrium signaling strategy. We should show that these properties are satis�ed
in equilibrium. A simple observation is enough to show that the equilibrium signaling
strategy and agents' payo� are continuous di�erentiable functions in α. In the following
result, we establish some interesting properties of these signaling strategy and equilibrium
payo�s.

Proposition 3 The equilibrium signaling strategy ρM (α) and student payo�s π (α, ρM (α))
satisfy the following properties:

1. ρM (α) is strictly increasing in α and bounded above.

2. π (α, ρM (α)) is strictly increasing in α.

Proof. See Appendix A.
Since the equilibrium signaling strategy is strictly increasing and probability of having

two students with the same skills is zero, no pair of students choose the same score to
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signal their skills. Then the equilibrium outcome of the CSM will be assortative with
respect to the true student skills. Hence, the highest skilled student will be matched with
the best college; the second highest skilled student will be matched with the second best
college; and so on. Further, students with higher abilities get greater payo�s. This result
comes from the single crossing property of the signaling cost, since higher skill students
have lower marginal signaling cost.

On tho other hand, the assortative structure of the equilibrium assignment of the CSM
implies that colleges payo�s depend on the ranking of enrollees and the prior distribution of
student skills. Let µ∗ be the unique equilibrium outcome of the CSM, then in equilibrium
colleges get expected payo�s,

EQ∗cj = E
[
α | Pµ∗(c)

]
= E

[
α(j,N)

]
=

ˆ w

0
αfα(j,N)

(α) dα for j = 1, ...,M . (19)

Where α(j,N) is the j-th order statistic from a sample of size N such that α(1) = max
1≤i≤N

αi

, α(2) = second greatest αi, and so on. It is well known that the order statistic α(j,N) is
distributed according to the probability density function,

fα(j,N)
(α) =

N !

(j − 1)! (N − j)!
f (α)F (α)N−j [1− F (α)]j−1 for j = 1, ...,M . (20)

Under this conditions, it is not di�cult to show that responding to students' signals is
an equilibrium situation for colleges. First of all, it is not di�cult to show that the best
strategy for any college cj is to respond to students' signals providing all higher quality
colleges {c1, c2, ..., cj−1} do. The argument is very simple, college cj has to compare the
expected skills of enrollees between responding to students' signals and any alternative
admission rule. Note that cj knows that all students are willing to accept its o�er but those
already enrolled at colleges {c1, c2, ..., cj−1}, since by assumption those colleges respond to
signals and have greater qualities. This implies that any potential enrollee of the college
cj has skills α ≤ α(j). By responding to students' signals, the college cj will enroll the best
student among the available ones. In contrast, with any other admission rule it will enroll
a lower skilled students.

Now consider the case of the best college, c1 knows that its o�er will be accepted by any
student. Since by responding to students' signals, c1 will enroll the best student among
all students, it optimally responds to students' signals. Then a simple induction argument
shows that all colleges respond to students' signals.

5 Comparative statics.

In previous sections, we analyze a separating symmetric equilibrium of the signaling game
induced by the CSM. We characterize an equilibrium signaling strategy that depends on
several parameters like the prior distribution of skills; the number of students and school
seats; and college qualities. Our explicit characterization allows us to conduct interesting
comparative statics exercises to analyze the impact of a change in the underlying param-
eters of the model on the equilibrium signaling strategy. In particular, we focus on three
experiments:

1. A change in the number of students;
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2. A change in the number of school places; and

3. A change in the quality of colleges.

The analysis of these experiments is crucial to understand real-world colleges admissions
as a signaling process whose outcome depends on the interaction of strategic decision
makers. Our model provides a good approach to analyze the e�ect of a change of these
underlying parameters given our closed form characterization of the signaling equilibrium
and empirical evidence that support our theoretical results.

One of the most important real-world signal in college admissions is the SAT test in
the US. Most students take the SAT during the last year of high school, and almost all
colleges and universities use it to make admission decisions. Several empirical studies
analyze the importance of the SAT and provide empirical evidence that support our model
of decentralized college admissions with incomplete information and costly signaling. First
of all, the SAT is a costly signal that depends on on the amount of e�ort invested by
students. Further, according to the structure and content of the SAT is expected that
higher skilled students get better scores. On the other hand, empirical evidence suggests
a strong correlation between SAT scores and student skills. For instance, there is a high
correlation between SAT scores and several measures of student success like IQs and the
probability of success in college (Frey and Detterman, 2004). Finally, it is observed that
the best colleges and universities tend to enroll students with high SAT scores (Webster,
2001a, 2001b). This implies that the matching between colleges and students tend to be
assortative with respect to the true student skills.

A bad understanding of the underlying signaling game in college admissions may lead
us to suggest wrong policy recommendations. For instance, empirical evidence in the US
shows a decline in the mean SAT scores as the participation rate increases. If we only
consider the high correlation between SAT scores and measures of student skills. We can
suggest that the decline in SAT scores comes from an increase in the proportion of low
skilled students, i.e. a change in the current distribution of student skills. According to this
argument, a policy recommendation would be to increase the expenditure in SAT coaching
and tutorials in high school in order to improve abilities of new test-takers. However,
the previous argument and policy recommendation ignore the signaling game in college
admissions, since strategic students may decrease the investment in signaling in the face
of new competitors with no change in the distribution of student skills.

5.1 A change in the number of students.

We analyze the e�ect of a change in the number of students over the equilibrium signaling
strategy ρM (α) = ρM (α,N). Intuitively, an increase in the number of students should
increase the competition for school places. It seems reasonable that this increase in com-
petition should lead students to increase the investment in signaling in order to beat new
competitors. This intuition seems correct, however the e�ect of increasing the competition
may not be symmetric among students. The probability of beating potential competitors
depends on student abilities. A low skilled student knows that the probability of facing
new high skilled competitors is big while a high skilled student knows that the probability
of facing quali�ed competitors is small.

Our characterization of the equilibrium signaling strategy allows us to conduct a com-
parative static exercise where we increase the number of students while we maintain �xed
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all other parameters of the model. The result of this exercise shows that this e�ect depends
on academic abilities. Formally,

Proposition 4 For any college admissions problem with M ≥ 1 colleges and N > M
students, ρM (α,N + 1) < ρM (α,N) for all α ≤ αN (N) and N > M . Further, the

threshold αN (N) is strictly monotone increasing N .

Proof. See Appendix B.
The previous result has two main implications. First of all, we �nd that low quali�ed

students decrease the investment in signaling while the high skilled students may increase
it, as the number of students increases. Intuitively, a low skilled student should beat N−k
competitors to get a place at college ck. When the number of students increases to N ′ > N ,
he not only should beat N ′ − k competitors to get the same school place but also has a
big probability of facing new high skilled competitors. In contrast, a high skilled student
should also beat more competitors to enroll at college but at the same time he has a small
probability of facing new high skilled competitors. These two opposite e�ects may lead
high skilled students to increase the probability of enrolling at college and the investment
in signaling.

Figure 1: E�ect of increasing the number of students

The second interesting implication regards with the monotonicity of the threshold
αN (N). We �nd that this threshold is monotone increasing in N , i.e. αN (N + 1) >
αN (N) for any N > M . This implies that students do not increase the investment in
signaling when they face N + 1 competitors if they have already decreased it with N .
This property of the equilibria and the fact that the the equilibrium signaling strategy
is bounded above allow us to infer the evolution of the average investment in signaling
when the number of students increases. Let R (N) =

´
ρM (α,N) f (α) dα be the expected

(average) investment in signaling, then there should exist a su�ciently large demand for
school places N̂ such that R (N + 1) < R (N) for all N ≥ N̂ .
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Figure 2: Average investment in signaling with respect to N

Our results are consistent with an interesting real-world fact. In the US college ad-
missions system, it has been extensively analyzed the impact of increasing the number of
test-takers on the mean SAT scores. According to data of the College Board for several
years, it has been observed a decline in the mean SAT scores as the participation rate
increases. The College Board explains this stylized fact in the following way11:

�It is common for mean scores to decline slightly when the number of students taking

an exam increases because more students of varied academic backgrounds are represented

in the test-taking pool.�
On the one hand, this interpretation only considers the positive correlation between

the SAT and students abilities to conclude that an increase in the number of applicants
systematically decreases the proportion of good test-takers. On the other hand, this inter-
pretation does not consider the possibility that students optimally change their strategies
in the face of new competitors. Clearly, this explanation ignores the underlying signaling
game in college admissions and tries to justify that a change in the number of competitors
a�ect the distribution of student skills. In contrast our model suggests that an increase in
the number of applicants not only leads low skilled students to decrease the investment in
signaling but also increases the proportion people who reduce it. Then an increase in the
number of competitors will eventually reduce the average investment in signaling with no
change in the prior distribution of student abilities.

5.2 A change in the number of school places.

The following experiment regards with the e�ect of changing the number of school places
on the equilibrium signaling strategy. We consider an experiment where the number of
school places can increase but remaining lower than the number of students. Intuitively,
there is decrease in competition for school places that should lead students to reduce the
investment in signaling

Our model shows that this intuitive argument may not be correct, at least not for all
students. As in the previous case, the e�ect of a change in the number of school places is
not symmetric across student. In order to simplify, we consider a very simple model with

11College board (2011), �43% of 2011 College-Bound Senior Met SAT College and Career Read-
ness Benchmark� at http://press.collegeboard.org/releases/2011/43-percent-2011-college-bound-seniors-
met-sat-college-and-career-readiness-benchmark
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N students and one college that o�ers M ≥ 1 school seats. In this setting, it is easy to
show that the equilibrium signaling strategy of the problem satis�es the following,

ρM (α,M) = c−1
(
v1
´ α
0
φ (x) f(M,N−1) (x) dx

)
(21)

Then we establish the following result,

Proposition 5 For any college admissions problem with one college with M ≥ 2 school

seats and N > M + 1 students, ρM (α,M + 1) > ρM (α,M) for all α ≤ αM (M,N).
Further, the threshold αM (M,N) is monotone increasing in N and monotone decreasing

in M .

Proof. See Appendix B.
The previous result has several interesting implications. First of all, an increase in the

number of school places leads low skilled students to increase the investment in signaling
while the high quali�ed students may decrease it. Intuitively, an increase in the number
of school places should be equivalent to a decrease in the number of students with a �xed
number of school seats. When a student leaves the market, the low quali�ed students
increase their probability of enrolling at college, since they should beat fewer competitors
and the probability of facing high skilled competitors decreases. This increment in the
probability of enrolling at college leads low skilled students to increase the investment
in signaling. On the other hand, the best students face a decrease in the probability of
enrolling at college. Then for high quali�ed student is more likely to face another high
skilled competitor as the number of students decreases. This increase in competition lead
the high skilled students to decrease the investment in signaling.

Figure 3: E�ect of increasing the number of school places

We also show that threshold αM (M,N) is monotone decreasing inM , i.e. αM (k + 1, N) <
αM (k,N) for k = 1, ...,M. This result allows us to establish some general conclusions about
the evolution of the average investment in signaling as a function of the number of school
places. We prove that low and high skilled students change the investment in signaling in
opposite directions. When there are a few available school seats, a new one is very valu-
able and leads students to increase the average investment in signaling. However, when
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the number of school places increases, the proportion of people that decrease the invest-
ment also increases, since a new school place is less valuable. Then, there should be a
big enough number of school places, from which an additional school seat decreases the
average investment in signaling.

Figure 4: Average investment in signaling with respect to M

5.3 A change in the quality of colleges

In this section, we analyze the e�ect of a change in college qualities on the equilibrium
signaling strategy. We focus on a change in qualities that preserve ordinal student prefer-
ences. For instance, if the college ck changes its quality from vk to v′k, it should be true
that vk−1 > v′k > vk+1, whenever vk−1 > vk > vk+1. This assumption makes comparable
the equilibrium signaling strategies before and after the change in college qualities, since
the equilibrium assignment of the CSM is the same in both situations.

Intuitively, when a college increases its quality the average quality of schools also in-
creases, this increment in students' valuations makes reasonable to increase the investment
in signaling. However, as in the previous cases, this result depends on student abilities.
Let sgn (x) be a function such that sgn (x) = 1 if x > 0, sgn (x) = −1 if x < 0 and
sgn (x) = 0 if x = 0. Then we establish the following result.

Proposition 6 For any college admissions problem with M ≥ 2 colleges and N > M
students, sgn (ρM (α, v′k)− ρM (α, vk)) = sgn (v′k − vk) for all α ≤ αvk (N, k) and k =
1, ...,M . Further, the threshold αvk (N, k) is monotone increasing N for all k = 2, ...,M
and monotone decreasing in k.

Proof. See Appendix B.
The previous result has interesting implications. First of all, only low skilled students

are willing to increase the investment in signaling while the high quali�ed students may
decrease it. Intuitively, the an increase in college qualities is more valuable for low skilled
students than for high skilled ones. This implies that only an increase in the quality of
the best colleges leads the highest skilled students to increase the investment in signaling.
On the other hand, we also show that the threshold αvk (N, k) is monotone decreasing in
k, i.e. αvk (N, k + 1) < αvk (N, k) for all k = 1, ...,M − 1. As expected, students are more
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willing to increase their investment for high quality colleges. Further, in Appendix B we
show that αv1 (N, 1) = w for any N , which implies that only an increase in the quality of
the college c1 has no asymmetry across students, i.e. all students are willing to increase
the investment in signaling.

Figure 5: A change in the quality of the best college

6 Gains of the CSM

In this paper, we analyze a separating symmetric equilibria of the CSM that maximizes
the number of potential matches and lead the best students to enroll at the best colleges.
In contrast with no signaling, low quality colleges are able to enroll better students with
positive probability. Then some colleges may prefer to run an admissions system with no
signaling to enroll better students with positive probability. A similar argument applies
for low skilled students, whom pay the signaling cost and lose the chance of enrolling at
high quality colleges.

According to the previous argument, some agents may get losses under the CSM in
the sense that they can get better assignments and payo� with no signaling. Further,
it seems that low quality colleges and low skilled students are the most damaged agents
under the CSM. We de�ne the gains of implementing the CSM in a natural way, as the
di�erence in equilibrium payo�s between the separating signaling equilibria of the CSM
and the symmetric equilibria of college admissions problem with no signaling. According
to this de�nition, students' gains are de�ned as follows,

L (α) = π (α, ρM (α))− EU (N,M) (22)

Since the student's payo� in the game with no signaling EU (N,M) is type independent,
students' gains are strictly increasing in α. However, there always exits a proportion of
people that gets losses under the CSM, since π (0, ρM (0)) = 0 and EU (N,M) > 0. Note
that eventually all students may get losses depending on the prior distribution of skills.
However, only the highest skilled students have the possibility of getting positive gains.

The previous de�nition implies that college cj 's gains are de�ned as follows,

∆EQ (j,N) = EQ∗cj − EQcj for j = 1, ...,M. (23)
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Where EQ∗cj = E
[
α(j)

]
is cj 's payo� in the separating equilibria of the CSM and

EQcj =
(
N−1
N

)j−1
E [α] is cj 's payo� in the game with no signaling. The analysis of these

gains is not a trivial issue. For instance, it is clear that with no signaling an increase in
the number of applicants must increase the probability of enrolling a student with average
abilities. Under the CSM, an increase in the number of applicants should lead colleges
to enroll better and better students. Since colleges gains are the di�erence between these
payo�s, it is not clear the �nal e�ect of increasing the number of students on colleges' gains.
Similar arguments can be applied in the case of qualities, it is not clear which colleges get
the highest gains or if colleges gains are monotone in college rankings.

On the other hand, to analyze colleges' gains we require the analysis of order statis-
tics. This is a di�cult problem, since most distributions have no closed form solutions for
moments of order statistics. To analyze this problem, we consider particular prior distri-
butions where it is possible to �nd closed form formulas for these moments. We focus on

the exponential model12, in this case it is possible to show that E
[
α(j)

]
=

N+1−j∑
k=1

θ
N+1−k

for j = 1, ...,M where E [α] = θ (Huang, 1974). Then, colleges' gains ∆EQ (j,N) satisfy
the following equation,

∆EQ (j,N) = θ

N+1−j∑
k=1

1

N + 1− k
− θ

(
N − 1

N

)j−1
(24)

Then, we establish the following result.

Proposition 7 Consider any M by N college admissions problem such that N > M ≥ 1.
Assume that students' skills are exponentially distributed with parameter θ > 0. Then the

following holds:

1. ∆EQ (j,N) are strictly monotone increasing in N , i.e. ∆EQ (j,N + 1) > ∆EQ (j,N)
for all N > M and j = 1, ...,M ;

2. ∆EQ (j,N) are strictly monotone decreasing in j, i.e. ∆EQ (j + 1, N) < ∆EQ (j,N)
for all N > M and j = 1, ...,M − 1; and

3. For any M ≥ 1 there always exists an N∗ > M such that ∆EQ (j,N) ≥ 0 for all

j = 1, ...,M and all N ≥ N∗.

Proof. See Appendix C.
The previous result has interesting implications. First of all, an increasing demand for

school places improve the gains of enrolling students based on costly signals. Intuitively, an
increasing pool of students leads colleges to reduce the risk of remaining unmatched while a
costly signal becomes more and more e�ective to pick the best available students. Another
interesting implication regards with the comparison of gains among colleges. As in the
case of students, colleges' gains can be ranked according to college qualities. This result
implies that the big winners of the CSM are the high quality colleges, which not only enroll
the best students but also get the greatest gains. The third interesting implication regard

12Skills are exponentially distributed with parameter θ > 0, if α is distributed according the density
function, f (α; θ) = 1

θ
e−

α
θ . In this case, the cumulative distribution function is F (α; θ) = 1 − e−

α
θ . In

addition, E [α] = θ.
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with the relationship between the size of the demand for school places and colleges' gains.
We �nd that a big enough demand for school places leads all colleges to get positive gains.
This result contrasts with the case of students, where there is a proportion of students that
always get losses.

Figure 6: Colleges' gains with exponential distributed skills

It is easy to show that the previous results cannot be trivially extended to any prior
distribution of student skills. As we show in the following �gure, we cannot guarantee
neither the monotonicity of colleges' gains with respect to the number of students nor the
monotonicity with respect to colleges' qualities. In this case, we consider Beta distributed
skills with parameters a = 10 and b = 2. Note that this distribution is skewed to the right,
this fact may explain why the previous results about colleges' gains do not hold any more,
since the probability of enrolling a good student with no signaling is signi�cantly big.

Figure 7: Colleges' gains with Beta (10,2) distributed skills
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7 Conclusion

We analyze some consequences of coordination problems in decentralized college admis-
sions with incomplete information. We consider a matching problem where colleges with
observable qualities want to enroll student whose abilities are private information. We an-
alyze a simple decentralized matching mechanism called Costly Signaling Mechanism

(CSM). Under the CSM, students choose a costly observable score to signal their skills.
We characterize a separating symmetric equilibrium of the game induced by the CSM. In
this equilibrium the CSM maximizes the number of potential matches of the problem and
induces agents to matched e�ciently, in the sense that the best students will enroll at the
best colleges. Hence, for the case in which the number of students equals the number of
school seats, all agents will get matched while when there are more students than school
places only the highest skilled students will get matched.

We conduct three exercises of comparative statics that allow us to analyze the impact of
a change in the underlying parameters of the model on the equilibrium signaling strategy.
Our main result shows that this e�ect is not symmetric across students, since they depend
on student abilities. The �rst comparative statics exercise regards with the e�ect of a
change in the number of students. In this case, we show that an increase in the number of
students leads low skilled students to decrease the investment in signaling while the high
skilled students may increase it. We also analyze the e�ect of a change in the number of
school places and a change in college qualities with similar implications.

Finally, we analyze the gains of the CSM which are de�ned in a natural way as the
di�erence in equilibrium payo�s between the separating signaling equilibria of the CSM
and the symmetric equilibria of the college admissions problem with no signaling. Under
this de�nition, students' gains are strictly increasing with respect to the student skills, but
eventually, all students may get losses depending on the prior distribution of skills. Since
colleges' gains require the analysis of order statistics, we consider the particular case of
exponential distributed skills which allows us to �nd closed form formulas of colleges' gains.
The exponential model has very interesting implications. First of all, colleges' gains are
monotone increasing in college qualities. Second, colleges' gains are monotone increasing
in the number of students, i.e. all colleges bene�t from an increasing demand for school
places. Finally, we show that a su�ciently large demand for school places leads all colleges
to get positive gains.

8 Appendices

8.1 Appendix A: The signaling equilibrium

The maximization problem of any student with parameter α is:

max
P1≥0

{
M∑
k=1

vk

(
N − 1

k − 1

)
F
(
ρ−1N (P1)

)N−k [
1− F

(
ρ−1N (P1)

)]k−1 − c (P1)

φ (α)

}
(25)

Let's de�ne the function ϕ (x,N, k) = F (x)N−k [1− F (x)]k−1. Hence, for each k ∈
{2, ..., N − 1} it is satis�ed the following,

ϕ′ (x,N, k) = [(N − k) (1− F (x))− (k − 1)F (x)]F (x)N−1−k [1− F (x)]k−2 f (x) . (26)

Hence, the FOC of the payo� function π (α, P1) with respect to P1 is given by,
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

v1 (N − 1)F
(
ρ−1
N (P1)

)N−2 f(ρ−1
N

(P1))
ρ′
N(ρ

−1
N

(P1))
+

M∑
k=2

vk(N − k)
(
N−1
k−1

)
F
(
ρ−1
N (P1)

)N−1−k [
1− F

(
ρ−1
N (P1)

)]k−1 f(ρ−1
N

(P1))
ρ′
N(ρ

−1
N

(P1))
−

−
M∑
k=2

vk (k − 1)
(
N−1
k−1

)
F
(
ρ−1
N (P1)

)N−k [
1− F

(
ρ−1
N (P1)

)]k−2 f(ρ−1
N

(P1))
ρ′
N(ρ

−1
N

(P1))


− c′ (P1)

φ (α)
= 0 (27)

In a symmetric equilibrium it is satis�ed P1 = ρM (α), then
v1 (N − 1)φ (α)F (α)

N−2
f (α) +

+
M∑
k=2

vk (N − k)
(
N−1
k−1

)
φ (α)F (α)

N−1−k
[1− F (α)]

k−1
f (α)−

−
M∑
k=2

vk (k − 1)
(
N−1
k−1

)
φ (α)F (α)

N−k
[1− F (α)]

k−2
f (α)

 = c′ (ρN (α)) ρ′N (α) (28)

By reordering and solving this di�erential equation with the initial condition ρM (0) =
0, we �nd that the signaling strategy ρM (α) satis�es,

ρM (α) = c−1

 (N − 1)
M−1∑
k=1

(vk − vk+1)
(
N−2
k−1

) ´ α
0
φ (x)F (x)N−1−k [1− F (x)]k−1 f (x) dx+ ...

...+ (N − 1) vM
(
N−2
M−1

) ´ α
0
φ (x)F (x)N−M−1 [1− F (x)]M−1 f (x) dx

 (29)

This completes the maximization problem of any student with parameter α. Note that
(N − 1)

(
N−2
k−1
)

= (N−1)!
(k−1)!(N−1−k)! , then we can re-write this signaling strategy as follows,

ρM (α) = c−1

(
M−1∑
k=1

(vk − vk+1)

ˆ α

0

φ (x) f(k,N−1) (x) dx+ vM

ˆ α

0

φ (x) f(M,N−1) (x) dx

)
(30)

Where f(k,N−1) (x) = (N−1)!
(k−1)!(N−1−k)!F (x)N−1−k [1− F (x)]k−1 f (x) for k = 1, ...,M .

Note that f(k,N−1) (x) is the density probability function of the x-th highest order statistic
from an iid sample of size N − 1.

Proof of proposition 2:

Consider that any student with parameter α is planing to deviate from the signaling
strategy ρM (α) by choosing an alternative score P ′. Assume w.l.g. that 0 ≤ P ′ < ρM (α),
since the signaling strategy is strictly increasing in α there exists a unique 0 ≤ α′ < α such
that P ′ = ρM (α′). Then by choosing the score P ′ the student gets the expected payo�
π (α, P ′) = π (α, ρM (α′)) given by,

π
(
α, ρM

(
α′
))

=
M∑
k=1

vk

(
N − 1

k − 1

)
F
(
α′
)N−k [

1− F
(
α′
)]k−1 − c (ρM (α′))

φ (α)
(31)

By deviating to P ′, the student losses the extra payo�,

π (α, ρM (α))−π
(
α, ρM

(
α′
))

=


M∑
k=1

vk
(N−1
k−1

) (
F (α)N−k [1− F (α)]k−1 − F (α′)N−k [1− F (α′)]k−1

)
−

− 1
φ(α)

(c (ρM (α))− c (ρM (α′)))
(32)

Note that the increment in the signaling cost c (ρM (α)) − c (ρM (α′)) is positive and
can be written as,
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c (ρM (α))− c
(
ρM

(
α′
))

=

M−1∑
k=1

(vk − vk+1)

ˆ α
α′
φ (x) f(k,N−1) (x) dx+ vM

ˆ α
α′
φ (x) f(M,N−1) (x) dx (33)

Since φ (x) is strictly increasing and positive in x, it is clear that

1

φ (α)

(
c (ρM (α))− c

(
ρM

(
α′
)))

<

M−1∑
k=1

(vk − vk+1)

ˆ α
α′
f(k,N−1) (x) dx+ vM

ˆ α
α′
f(M,N−1) (x) dx (34)

Note that by reordering the previous equation, we �nd that the following condition
holds,

1

φ (α)

(
c (ρM (α))− c

(
ρM

(
α′
)))

< (N − 1) v1

ˆ α
0
F (x)N−2 f (x) dx+

M∑
k=2

vk

(N − 1

k − 1

) ˆ α
0
ϕ′ (x,N, k) dx (35)

Note that for any k ∈ {2, ..., N − 1}, it holds
ˆ α

α′
ϕ′ (x,N, k) dx = F (α)

N−k
[1− F (α)]

k−1 − F (α′)
N−k

[1− F (α′)]
k−1

(36)

Which implies that π (α, ρM (α)) − π (α, ρM (α′)) > 0. By a similar argument, it is
possible to show that any deviation P ′ > ρN (·) cannot be a pro�table deviation. This
completes the proof.

Proof of Proposition 3:

• ρM (α) is strictly increasing in α and bounded above.

To prove that the signaling strategy ρM (α) is strictly increasing in α, it is enough to show
that the function c (ρM (α)) is strictly increasing in α, since c (·) is a strictly increasing
function. Then

d

dα
(c (ρM (α))) =

 (N − 1)
M−1∑
k=1

(vk − vk+1)
(
N−2
k−1

)
φ (α)F (α)N−1−k [1− F (α)]k−1 f (α) + ...

...+ (N − 1) vM
(
N−2
M−1

)
φ (α)F (α)N−M−1 [1− F (α)]M−1 f (α)

(37)

It is clear that d
dα (c (ρM (α))) > 0 for all α, as we desired. To prove that signaling

strategy ρM (α) is bounded above, we use the the fact that this function can be written as
follows,

c (ρM (α)) =

M−1∑
k=1

(vk − vk+1)

ˆ α

0

φ (x) f(k,N−1) (x) dx+ vM

ˆ α

0

φ (x) f(M,N−1) (x) dx (38)

Where f(k,N−1) (x) is the density function of the k−th order statistic from anN−1 sam-
ple with distribution function F (x) such that x(1,N−1) = max

1≤i≤N−1
{xi}, x(2,N−1)=second

greatest in {xi}N−1i=1 and so on. Since φ (x) is strictly increasing and bounded in [0, w], we
know that
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c (ρM (α)) ≤ φ (w)

(
M−1∑
k=1

(vk − vk+1)

ˆ w

0
f(k,N−1) (x) dx+ vM

ˆ w

0
f(M,N−1) (x) dx

)
(39)

But by de�nition
´ w
0 f(k,N−1) (x) dx = 1 for all k = 1, ...,M . Then

c (ρM (α)) ≤ φ (w)

(
M−1∑
k=1

(vk − vk+1) + vM

)
<∞ (40)

• π (α, ρM (α)) is strictly increasing in α .

Now we want to show that the equilibrium payo� π (α, ρM (α)) is strictly increasing in α.
To prove this property, we calculate the derivative of the payo� function with respect to
α. Then

d

dα
(π (α, ρM (α))) =

 (N − 1) v1F (α)N−2 f (α) +
M∑
k=2

vk
(
N−1
k−1
)
ϕ′ (α)−

− 1
φ(α)2

(
φ (α) d

dα (c (ρM (α)))− c (ρM (α))φ′ (α)
) (41)

By reordering the previous expression, it is easy to show that

d

dα
(π (α, ρM (α))) =

c (ρM (α))φ′ (α)

φ (α)2
> 0 (42)

This completes the proof.

8.2 Appendix B: Comparative statics

Proof of Proposition 4:

Let ρM (α,N) be the equilibrium signaling strategy of any college admissions problem
withM ≥ 1 colleges andN > M students. Since the cost function c (·) is strictly increasing,
it is enough to show that the function c (ρM (α,N)) satis�es the desired properties. Then,
it is easy to show that the di�erence c (ρM (α,N + 1))− c (ρM (α,N)) is equal to


M−1∑
k=1

(vk − vk+1)
´ α
0

(
N
(N−1
k−1

)
F (x)− (N − 1)

(N−2
k−1

))
φ (x)F (x)N−1−k [1− F (x)]k−1 f (x) dx+ ...

...+ vM
´ α
0

(
N
(N−1
M−1

)
F (x)− (N − 1)

(N−2
M−1

))
φ (x)F (x)N−M−1 [1− F (x)]M−1 f (x) dx

(43)

Given that (N − 1)
(
N−2
k−1
)

= (N − k)
(
N−1
k−1
)
, the previous equation reduces to the fol-

lowing,


M−1∑
k=1

(vk − vk+1)
(
N−1
k−1

) ´ α
0
(NF (x)− (N − k))φ (x)F (x)N−1−k [1− F (x)]k−1 f (x) dx+ ...

...+ vM
(
N−1
M−1

) ´ α
0
(NF (x)− (N −M))φ (x)F (x)N−M−1 [1− F (x)]M−1 f (x) dx

(44)

Then, it is clear that c (ρM (α,N + 1))−c (ρM (α,N)) < 0 if α ≤ αN (N) where αN (N)
is the unique solution to the equation,
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F (x) = 1− M

N
(45)

Further, the threshold αN (N) is monotone increasing in N, i.e. αN (N + 1) > αN (N)
for all N > M . This completes the proof.

Proof of Proposition 5:

Consider the equilibrium signaling strategy of any college admissions problem with one
college with M ≥ 2 school seats and N ≥M + 2 students.

ρM (α,M) = c−1
(

(N − 1) v1
(
N−2
M−1

) ´ α
0
φ (x)F (x)

N−1−M
[1− F (x)]

M−1
f (x) dx

)
(46)

Since the function c (·) is strictly increasing, to prove this result we focus on the function
c (ρM (α,M)). Then, it is easy to show that the di�erence c (ρM (α,M + 1))−c (ρM (α,M))
is equal to

v1 (N − 1)

ˆ α

0

((
N − 2

M

)
(1− F (x))−

(
N − 2

M − 1

)
F (x)

)
φ (x)F (x)N−2−M [1− F (x)]M−1 f (x) dx (47)

By reordering and applying the identity
(
N
k

)
=
(
N−1
k−1
)

+
(
N−1
k

)
, the previous equation

reduces to the following,

v1 (N − 1)

ˆ α

0

((
N − 2

M

)
−
(
N − 1

M

)
F (x)

)
φ (x)F (x)

N−2−M
[1− F (x)]

M−1
f (x) dx (48)

Given that
(
N−1
M

)
= N−1

N−1−M
(
N−2
M

)
, we get

v1 (N − 1)

(
N − 2

M

)ˆ α

0

(
1− N − 1

N − 1−M
F (x)

)
φ (x)F (x)

N−2−M
[1− F (x)]

M−1
f (x) dx (49)

Then, it is clear that c (ρM (α,M + 1)) − c (ρM (α,M)) > 0 if α ≤ αN (M,N) where
αM (M,N) is the unique solution to the equation,

F (x) = 1− N − 1−M
N − 1

(50)

Further, it is clear that the threshold αM (M,N) is monotone increasing in N and
monotone decreasing in M . This completes the proof.

Proof of Proposition 6:

We analyze the e�ect of a change in the quality of the college ck, then we consider that
the equilibrium signaling strategy depends on the quality of this college, i.e. ρM (α, vk).
We know that the equilibrium signaling strategy satis�es the equation,

c (ρM (α, vk)) = (N − 1) v1

ˆ α

0

φ (x)F (x)N−2 f (x) dx+

M∑
k=2

vk

(
N − 1

k − 1

) ˆ α

0

φ (x)ϕ′ (x,N, k) dx (51)
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Consider a change in the quality of the college ck such that vk−1 > v′k > vk+1, i.e. a
change in college qualities that preserve students' ordinal preferences. It is not di�cult to
show that the di�erence c (ρM (α, v′k)) − c (ρM (α, vk)) satis�es the following equation for
k = 2, ...,M ,

c
(
ρM
(
α, v′k

))
− c (ρM (α, vk)) =

(
v′k − vk

)(N − 1

k − 1

)ˆ α

0
φ (x)ϕ′ (x,N, k) dx (52)

Since ϕ′ (x,N, k) = [(N − k) (1− F (x))− (k − 1)F (x)]F (x)N−1−k [1− F (x)]k−2 f (x),
it is easy to show that whenever α ≤ αvk (N, k)

sgn
(
c
(
ρM
(
α, v′k

))
− c (ρM (α, vk))

)
= sgn

(
v′k − vk

)
(53)

Where αvk (N, k) is the unique solution to the equation,

F (x) =
N − k
N − 1

(54)

Further, it is easy to observe that the threshold αvk (N, k) is monotone increasing in
N for all k = 2, ...,M and monotone decreasing in k. This completes the proof.

8.3 Appendix C: Gains of the CSM

If α is distributed according to an exponential distribution function f (α; θ) = 1
θe
−α
θ for

α ∈ [0,∞) and θ > 0, then

1. E [α] = θ and

2. E
[
α(j)

]
=

N+1−j∑
k=1

θ
N+1−k for j = 1, ..., N.

where α(1) = max
1≤i≤N

αi, α(2)=second greatest in {αi}N−1i=1 and so on (Huang, 1974). Consider

any M by N college admissions problem such that N > M ≥ 1, then colleges' gains satisfy,

∆EQ (j,N) = θ

N+1−j∑
k=1

1

N + 1− k
− θ

(
N − 1

N

)j−1
. (55)

Assume w.l.g. that θ = 1. We establish the following auxiliary results.

Claim 1 The continuous function f (x) =
(
x−1
x

)j−1
is strictly increasing and strictly con-

cave in x for all x > j ≥ 3.

Proof. To prove this result, we simply take the �rst and second derivative of the function

f (x) =
(
x−1
x

)j−1
. Then it is easy to show the following:

1. f ′ (x) =
(
j−1
x2

) (
x−1
x

)j−2
> 0; and

2. f ′′ (x) =
(
j−1
x4

) (
x−1
x

)j−3
(j − 2x) < 0.

For all x > j ≥ 3, this completes the proof.
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Lemma 1 ∆EQ (j,N) > ∆EQ (j + 1, N) for all j = 1, ...,M − 1.

Proof. It is not di�cult to show that the di�erence ∆EQ (j,N)−∆EQ (j + 1, N) satis�es
the following,

∆EQ (j,N)−∆EQ (j + 1, N) =
1

j
−
(
N − 1

N

)j−1(
1

N

)
(56)

Since,
(
N−1
N

)j−1 ≤ 1 for all j ≥ 1, we know that

∆EQ (j,N)−∆EQ (j + 1, N) ≥ 1

j
− 1

N
=
N − j
jN

. (57)

Since N > M ≥ j, ∆EQ (j,N) − ∆EQ (j + 1, N) > 0 for j = 1, ...,M − 1. This
completes the proof.

Lemma 2 ∆EQ (j,N) is strictly monotone increasing in N > M for all j = 1, ...,M .

Proof. Consider the following function for a given j = 1, ...,M ,

∆EQ (j,N + 1)−∆EQ (j,N) =


N+2−j∑
k=1

1
N+2−k −

N+1−j∑
k=1

1
N+1−k−

−
[(

N
N+1

)j−1
−
(
N−1
N

)j−1] (58)

By simplifying, we can get the following expression,

∆EQ (j,N + 1)−∆EQ (j,N) =
1

N + 1
−

((
N

N + 1

)j−1
−
(
N − 1

N

)j−1)
(59)

It is not di�cult to show by a direct inspection that ∆EQ (j,N + 1)−∆EQ (j,N) > 0
for j = 1, 2. Now consider the case of any j such that N > M ≥ j ≥ 3. By the Claim 1,
we know that

f ′(N) ≥
(

N

N + 1

)j−1
−
(
N − 1

N

)j−1
(60)

where f (x) =
(
x−1
x

)j−1
such that x > j ≥ 3. Hence,

∆EQ (j,N + 1)−∆EQ (j,N) ≥ 1

N + 1
−
(
j − 1

N2

)(
N − 1

N

)j−2
(61)

Since
(
N−1
N

)j−2 ≤ 1 for all j ≥ 2, we know that

∆EQ (j,N + 1)−∆EQ (j,N) ≥ 1

N + 1
− j − 1

N2
=
N2 − (j − 1) (N + 1)

N2 (N + 1)
. (62)

Given that N > M ≥ j ≥ 3 and (N − 1) (N + 1) > (j − 1) (N + 1), we conclude that

∆EQ (j,N + 1)−∆EQ (j,N) >
1

N2 (N + 1)
. (63)

Then ∆EQ (j,N + 1) −∆EQ (j,N) > 0 for all N > M ≥ j ≥ 3. This completes the
proof.

Proof of Proposition 7
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Properties 1 and 2 of colleges gains ∆EQ (j,N) come directly from Lemmas 1 and 2.
For the third property, assume that ∆EQ (M,N) ≥ 0 for N = M + 1, then N∗ = M + 1.
By Lemma 2, ∆EQ (M,N) ≥ 0 for all N ≥ N∗ > M . By Lemma 1, ∆EQ (j,N) ≥ 0 for
all j = 1, ...,M provided ∆EQ (M,N) ≥ 0. Then ∆EQ (j,N) ≥ 0 for all N ≥ N∗ and
j = 1, ...,M .

Now suppose that ∆EQ (M,N) < 0 for N = M + 1. Note that,

1. lim
N→∞

(
N−1
N

)M−1
= 1 for all M ≥ 1; and

2. lim
N→∞

E
[
α(M)

]
= lim

N→∞

N+1−M∑
k=1

1
N+1−k =∞.

Then there exists a N∗ > M such that ∆EQ (M,N∗) ≥ 0. Then by Lemmas 1 and 2,
∆EQ (j,N) ≥ 0 for all N ≥ N∗ and j = 1, ...,M . This completes the proof.
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