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Abstract

We analyze three applied incentive compatibility conditions within a class of queue-

ing problems motivated by the reassignment of flights to airport landing slots. A pre-

existing landing schedule becomes wasteful when airlines privately learn updates about

their flights’ cancelations or feasible flight times. The FAA’s objective is to create a

new queue that does not waste landing slots. We separately consider the airlines’ in-

centives to report their flights’ (IC1) feasible arrival times, (IC2) delay costs, or (IC3)

cancelations. Our first three results show that any Pareto efficient rescheduling rule

must be manipulable by each of these three methods separately.

By weakening efficiency to a form currently achieved by the FAA, we recover incen-

tive compatibility with respect to (IC2) and (IC3) by extending the Deferred Accep-

tance (DA) algorithm, while the FAA’s current mechanism fails (IC3). Our extension

is consistent with the FAA’s information infrastructure, which does not elicit delay

cost information. We show that essentially any such rule must fail (IC1), but that our

extension satisfies a weak version of (IC1).

Our model can be viewed as a one-sided version of the Gale–Shapley College Admis-

sions model where only college preferences are relevant. This makes it a counterpart to

the School Choice model (Abdulkadiroğlu and Sönmez (2003)) in which only student

preferences are relevant.
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1 Introduction

While weather-caused flight delays are frustrating to individual air passengers, they are of

even greater concern to policy makers. The economic impact of such delays measures in

the billions of dollars per year.1 While delays from weather are unavoidable, it turns out

that some of the resulting costs can be recovered by optimally rescheduling flights that

remain active during the delay after others have been canceled. This rescheduling is done

through a centralized authority—the Federal Aviation Administration (FAA)—but only after

airlines report certain privately-known information about their flights. This yields a natural

mechanism design problem that we formalize in this paper. Subject to design constraints

appropriate for this setting, we analyze three forms of incentive-compatibility pertaining to

the reports of flight delays, cancelations, and waiting costs.

Though we use the language of this application to describe landing slot problems, our

model can be interpreted more generally as constrained queueing. Agents (airlines) own sets

of jobs (flights) already queued to be processed by a server (airport). Some of the jobs are to

be canceled, while each remaining job has some earliest feasible processing time and waiting

cost. The remaining jobs must be rescheduled to avoid the efficiency loss from gaps in the

queue. For a centralized planner, doing this feasibly requires knowing both cancelations and

feasible processing times. The agents’ preferences are also determined by this—along with

waiting costs—all of which can be privately known.2

The goal of this paper is to determine the extent to which an efficiency-improving mech-

anism can induce agents to truthfully report one or more types of such information. Our

results are mixed, depending on the degree of efficiency one seeks to obtain. We show that

a strong form of efficiency is incompatible with any one of our three incentive compatibility

conditions. However, a weaker form of efficiency—the one considered in the transportation

literature on this problem—can be achieved while satisfying two of our three IC conditions,

along with a weakened version of the third. The rescheduling rule we use to demonstrate this

possibility result is an adaptation of the well-known Deferred Acceptance algorithm. Though

this rule is well-studied, none of our results directly follows from the related literature. In

fact some of the results are more positive than in other environments.

1A 2008 report of the US Joint Economic Committee (Sen. C. Schumer et al.) estimated the annual
economic cost of all flight delays to exceed $40 billion, around half of which is direct costs to the airlines.
Weather was the cause for roughly one-fifth of flight delays in January–June 2012. This is close to the
historic average; e.g. see http://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp, remembering
that N.A.S. delays are primarily weather related.

2We consider each of these three information types separately, so any single result of ours applies regardless
of whether the other two types are private information. In the landing slot application it is a reasonable
approximation to assume all of them to be privately known, as we describe later.
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To motivate our modeling choices and design constraints, Subsection 1.1 provides a brief

background on Ground Delay Programs (GDP’s)—the rescheduling process used by the

FAA when inclement weather reduces landing capacity. Various institutional (and legal)

constraints translate directly into mechanism design constraints pertaining not only to in-

centives, but forms of implicit property rights. We discuss related literature in Subsection 1.3

before formalizing our model in Section 2. A summary of our results is given in the conclud-

ing Section 7.

1.1 Ground Delay Programs

Our modeling choices, along with the design constraints we impose on mechanisms, are

motivated by institutional details such as legislative requirements, the FAA’s own explicit

policies, and the FAA’s current infrastructure for communication. We begin with basic infor-

mation on how Ground Delay Programs (GDPs) are performed, referencing the details most

relevant to our analysis. While we provide enough background to explain our assumptions,

we refer the reader to other sources for a more extensive discussion of the history and details

of the general GDP process.3

The purpose of a GDP is to temporarily reduce the rate of air traffic at an airport when

there is not enough capacity to satisfy the projected demand for landing slots. This supply-

demand imbalance is typically the result of inclement weather, during which landing rates

at airports are reduced for safety reasons, effectively reducing the supply of slots. Hours

in advance of a forecasted weather event for a particular airport, air traffic management

declares that a GDP will go into effect for that airport. Flights that are destined for that

airport—but still on the ground at their origination airports—are given delayed departure

times while still on the ground. These delayed departure times are spread out in order to

reduce the arrival rate at the affected airport.4

This description of GDP’s is misleadingly simple: all that seemingly needs to be done is

to spread out the arrival of flights in order to accommodate a reduced arrival rate. Indeed,

this is the first step of a GDP, known as Ration-by-Schedule. For example, suppose the

airport normally lands sixty flights per hour, but is limited to thirty flights per hour due to

weather. Then thirty 2-minute slots are created where there used to be sixty 1-minute slots,

and they are assigned in respective order to the first thirty flights of the originally planned

landing schedule.

3See Wambsganns (1997), Ball, Hoffman, and Vossen (2002), or Schummer and Vohra (2012), and refer-
ences therein.

4Flights already in the air, and certain other flights, are exempted from ground delays. This detail changes
neither the essence of our description nor the validity of our results, so we ignore it.
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Ration-by-Schedule per se would solve the supply-demand imbalance, if not for certain

operating constraints of the airlines. When a flight is assigned a delayed departure time,

its airline may be forced to react by canceling (or further delaying) that flight. This could

be due to a crew timeout (when they exceed their legal work hours for the day), related

aircraft delays at other weather-affected airports, or other reasons. Regardless of the reason,

such flight cancelations—made after the Ration-by-Schedule procedure—have the effect of

reducing demand for landing slots. In other words, the solution to a problem of scare

resources (reduced landing slots) yields a new problem of excess resources (newly vacated

slots).

Therefore, in order to make efficient use of these newly created gaps in the landing

schedule, the FAA must perform the Reassignment step of a GDP. After soliciting relevant

information from the airlines about changes to their flights’ status and feasible departure (and

hence arrival) times, the FAA feasibly reassigns the remaining flights in order to eliminate (or

minimize) vacancies in the landing schedule. It is this step that we examine as a mechanism

design problem.

Since around 1998 the FAA has used what is known as the Compression Algorithm to

perform the Reassignment step of a GDP. This choice of procedure for this step is not

as obvious as in the Ration-by-Schedule step for at least two reasons. First, one cannot

arbitrarily move flights earlier in the schedule to fill vacant slots, since doing so might

violate a flight’s feasibility constraints. Second, various institution details yield additional

constraints on the kinds of rules that can be used to reassign flights. We now elaborate on

these details, since they motivate many of the definitions in Sections 3 and 5.

1.2 Motivation for Design Constraints

Our objective is to analyze various forms of incentive compatibility under the following design

constraints.

Feasibility. The FAA’s primary objective is to feasibly reassign flights so that no landing

slots are wasted. In order to achieve this, each airline is asked to report not only its flight

cancelations (if any), but also the earliest feasible arrival time for each of its remaining

flights. This information allows the FAA to determine which slots are vacated and which of

the remaining flights can fill them. It is sufficient information to construct a non-wasteful

landing schedule, i.e. one that does not leave any desirable slot vacant.
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Simplicity. While flight arrival information is sufficient to calculate non-wasteful landing

schedules, it is not enough information to determine which landing schedules are fully Pareto

efficient (see Subsection 3.1). Full airline preference information would be required to know

whether an airline prefers to move flight f up to slot s, or move flight f ′ up to slot s′.

The FAA does not currently solicit this information. Its current method for executing the

Reassignment Step—the Compression Algorithm—takes as input only the cancelation and

arrival time information described earlier.

Such a restriction is practical, since such preference tradeoffs would require an airline to

evaluate and report preference information that is exponential in the number of flights. In

Section 5 we call such rules simple: those that satisfy this soft design constraint of taking

as input only cancelation and feasible arrival information.

Self-optimization. When the FAA provides a landing schedule, it specifies precisely which

flight is to occupy each landing slot. Since (by simplicity) the airline does not report a

preference for which of its flights should be given earlier slots, it seems obvious that an airline

should be permitted to swap the positions of any of its flights within its own portion of the

landing schedule. It turns out that this right is not only respected in practice, but is explicitly

granted in Section 17–9–5 of the FAA’s Facility Operation and Administration Handbook.5

We regard this as another design constraint. Regardless of how the FAA prescribes a landing

schedule, the landing schedule ultimately “consumed” by the airlines will be one in which

each airline has “self-optimized” its own portion of the schedule.

All three of the above objectives are motivated by market design constraints in the FAA’s

problem of reassigning landing slots. In Section 5 we call a reassignment rule FAA-conforming

if it satisfies all three of these conditions.

Individual Rationality. There is a trivial but unappealing way of satisfying the above

design constraints; namely by using a serial dictatorship. Such a method first would allow

airline A to occupy whichever slots it wants; subject to this it would allow airline B to occupy

any of the remaining slots it can use, etc. Not only is such a method unfair, but it would

obvious be disruptive each airline’s internal planning as its own landing schedule continues

to be arbitrarily re-specified. On the other hand, offering airlines the option to move its

flights earlier is not disruptive, since an airline would be free to decline. There we restrict

attention to rules that do not make any airline worse off than they already are following the

5The handbook is available through http://www.faa.gov/atpubs.
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Rationing step of the GDP.6

1.3 Related Literature

We expand the landing slot model of Schummer and Vohra (2012) by explicitly considering

airline preference for delaying one flight in exchange for expediting another. That paper and

ours sit between two literatures: an operations-oriented literature on the specific issue of

designing GDP protocols, and the game theoretic literature on matching.

Operations and Transportation

While the operations literature on GDP’s mentions some concern for incentives, the concept

is not formalized to the extent it is in the economics matching literature, as we do here.7

This literature instead considers various (social welfare) optimization problems under the

implicit assumption of complete information. For an historical perspective on this problem,

see Wambsganss (1997).8

Vossen and Ball (2006a) provide a linear programming approach to minimize total airline

costs, showing that a special case of their formulation is equivalent to Ration-by-Schedule.

Compared to their approach, they also argue (with data) that the currently-used Compres-

sion Algorithm is slightly worse at compensating airlines for releasing slots. Nevertheless,

given the magnitude of costs in this setting, these slight differences can add up to significant

sums, justifying further analysis.

Both the previous paper and Vossen and Ball (2006b) interpret the Compression Algo-

rithm as an implementation of a barter exchange process (under the implicit assumption

of truthful behavior). Following this comparison, they suggest improvements that would

increase efficiency from further trade.

Various papers extend this line of research into (social welfare) optimization in GDP’s.

Ball, Dahl, and Vossen (2009) enhance optimization by centrally endogenizing flight cance-

lation decisions. Hoffman and Ball (2007) add banking constraints, requiring certain “con-

nected” pairs of flights to land within a given time of each other. Niznik (2001) includes a

downstream effect of arrival delays, such as resulting departure delays. Ball and Lulli (2004)

6There are a few reasonable ways to define such a condition, but our results are robust to that choice.
A stronger condition than we consider—the core—is discussed by Schummer and Vohra (2012), whose main
motivation is the concept of property rights.

7An interesting exception is a rigorous, explicit example of manipulability provided by Wambs-
ganss (1997). Making it all the more interesting is the fact that the article’s main purpose is to provide
history and motivation for the FAA’s mid-1990’s modification of its rescheduling rule.

8Many of the references in this section also provide background information.
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and Ball, Hoffman, and Mukherjee (2010) modify Ration-by-Schedule by discriminating the

schedule in favor of distant flights; this improves efficiency when there is uncertainty about

future airport capacity.

Beyond optimization, this literature also addresses equitable allocation amongst airlines.

Vossen and Ball (2006a) show that Ration-by-Schedule lexicographically minimizes the maxi-

mum delay among all flights relative to their pre-GDP landing times, i.e. a Lorenz domination

result. Manley and Sherry (2010) examine both performance and equity measures for various

other methods of rationing slots.

Matching

The other related literature is that of matching problems and object allocation. With airlines

exchanging endowed landing slots, our model could be seen as a generalization of the (1-

sided) housing market model of Shapley and Scarf (1974). Given the nature of our results,

however, it is more informative to see our model as a restricted form of the celebrated (2-

sided) College Admissions model of Gale and Shapley (1962). They propose the well-known

Deferred Acceptance algorithm to match each capacity-constrained “college” (analogously,

airline) to its own set of “students” (landing slots) in a way that is stable.9

Our main restriction to the Gale–Shapley model is that the students (landing slots) in

our setting do not have preferences while colleges (airlines) do. In this sense our model fills

a gap in the literature as a complement to the School Choice model of Abdulkadiroğlu and

Sönmez (2003) in which students have preferences but colleges do not.10 In these applications,

colleges (or schools) have priority orders over students that can , for example, play the role

of preferences in the Deferred Acceptance algorithm. The “stability” of the resulting match

can be reinterpreted as a fairness condition with respect to the priority orderings. Hence,

to the extent that the priorities are meaningful, such priorities-based models lie somewhere

between the classic 1- and 2-sided models.

Incentives have been studied extensively in these models. Under the student-proposing

version of the Deferred Acceptance algorithm (sDA) proposed by Gale and Shapley (1962),

it is a weakly dominant strategy for students to report their true preferences (Dubins and

Freedman (1981); Roth (1982)). On the other hand, Roth (1982) shows that if a rule is

stable, then it cannot give such an incentive to all students and colleges.11

9See Roth and Sotomayor (1990) for a definition of stability and other standard concepts used in this
introduction.

10See also Balinski Sönmez, Sönmez(2011), Sönmez and Switzer (2012), and Kominers and Sönmez (2012).
11Furthermore, unless all colleges have unlimited capacities, not even an efficient, individually rational rule

provides such incentives; see Sönmez (1996), Alcalde and Barberà (1994), and Takagi and Serizawa (2010).
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Restricting to the School Choice model—where implicity only student incentives matter—

attention is focused on sDA (in light of the above results) and Top Trading Cycle (TTC)

algorithm of Shapley and Scarf (1974) which is not only strategy-proof but Pareto-efficient.

While sDA is generally not efficient; Ergin (2002) shows that it is when school priorities

satisfy an acyclicity condition. On the other hand Kesten (2006) shows that a further priority

domain restriction makes TTC stable, equating the two mechanisms. Even on other domains

where sDA is inefficient, sDA cannot be Pareto-dominated by another strategy-proof rule.12

An important fact to highlight is that, despite the positive results regarding student

incentives, it is more problematic to construct rules that provide incentives for the college

side of the classic model, e.g. as shown by Roth (1985). This suggests a greater challenge

within our model, since that is the side of the market we consider as agents, while the student-

side plays the role of objects (landing slots) for us. Nevertheless, we provide a class of rules

that satisfies a partial list of positive incentives properties, as we show in Subsection 5.3 and

Section 6.

In our model, airlines have initial ownership over slots before they are exchanged. This

feature is reminiscent of the model of house allocation with existing tenants (Abdulkadiroglu

and Sonmez (1999)). This model yields an individually rational, Pareto-efficient, strategy-

proof mechanism. Our model differs from that one in a few ways, most significantly in terms

of our agents’ specific form of preferences for multiple “houses” (landing slots).

In models where agents consume sets of objects (as opposed to a single house or college),

results tend to be negative. Konishi et al. (2000) endow agents with indivisible objects and

show that even with additive preferences, the weak core can be empty. In a related model

with separable preferences over sets, Atlamaz and Klaus (2007) show that efficient, individ-

ually rational rules must be manipulable through various forms of destroying, concealing, or

transferring endowed objects.13 We define similar conditions in Section 3. Our Theorem 3 is

a parallel result to one in Atlamaz and Klaus (2007), neither implying nor implied by theirs.

More significantly we provide a contrasting positive result in Subsection 5.3

These impossibility results have no implication in our model due to our structure on preferences.
12See Abdulkadiroglu, Pathak, and Roth (2009), and also Kesten (2010).
13Various other forms of endowment-manipulation are considered following the seminal contribution on

the subject by Postlewaite (1979). Somewhat distant from ours is the 2-sided matching model of Sertel and
Ozkal-Sanver (2002), who augment the marriage model by giving each agent a private endowment of money
that is shared the mate through fixed sharing functions. The mostly-negative results in their model—on the
manipulability of deferred acceptance through endowment hiding or destroying—contrast particularly with
our positive result in Subsection 5.3.
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2 Model

We introduce a model of time slot allocation in the language of the one application discussed

above: the reassignment of airport landing slots to airlines, in which each airline wishes

to use those slots for its own set of flights. Despite our use of this language, it should

be understood that the model is applicable to any environment in which jobs must be

rescheduled for processing when other jobs have been canceled or delayed.

There is a finite set of airlinesA, with elements typically denoted A,B,C ∈ A. The goods

to be allocated to the airlines consist of an ordered set of slots described by a (countably

infinite) set of integers S ⊂ ℕ ≡ {1, 2, . . .} with generic elements s, s′, t ∈ S.14 The slot

labels have cardinal meaning, e.g. slot 1 is interpreted as the earliest slot, slot 5 is two units

of time later than slot 3, etc. This plays a role in the formalization of preferences, below.

Each airline A ∈ A is associated with its own finite set of flights FA, with the set of all

airlines’ flights denoted F =
∪

A∈A FA.Though we speak of allocating slots to airlines, this is

done with the ultimate purpose of matching flights to slots. Each flight requires the use of

a single slot which cannot be shared. In addition, each flight f ∈ F must be assigned to a

slot no earlier than its earliest arrival time ef .

Flights are assigned to slots in a (flight) landing schedule, which is a function Π: F →
S that is injective (f ∕= f ′ implies Π(f) ∕= Π(f ′)). A landing schedule is (time) feasible if

for all f ∈ F , Π(f) ≥ ef .

A landing schedule implicitly describes which airlines take ownership of the slots occupied

by flights, but does not specify any form of ownership or endowment rights over vacant

(unoccupied) slots. In order to completely specify which airlines possess which slots, we

require the concept of a slot ownership function, which is correspondence Φ: A → S that

partitions S by airline; i.e. such that A ∕= B implies Φ(A) ∩ Φ(B) = ∅. Since Φ(s) is the

airline that owns slot s whether it is occupied or not, we say that Φ is consistent with a

landing schedule Π when

∀A ∈ A, ∀f ∈ FA Π(f) ∈ Φ(A).

Any (Π,Φ) satisfying this consistency condition is called an assignment.

14For all practical purposes, the set of slots is finite. We assume it to be infinite only to make the problem
well-defined when airlines potentially misreport flights’ feasible arrival times.
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Preferences

The strategic agents of our model—the airlines—consume subsets of S. Rather than hav-

ing general, arbitrary preferences over such sets, it is natural to model the following two

preference restrictions.

First, airlines care only about landing their flights. Therefore an airline A has preferences

only over subsets of size ∣FA∣. Strictly smaller subsets would violate feasibility. Preferences

over sets of size ∣FA∣ can be implicitly extended to larger sets on the basis of which ∣FA∣ slots

within the set the airline would actually use. Observe that it therefore makes sense to say

that airlines have preferences over landing schedules.

A second restriction concerns the time element of the model. We assume that, all else

being equal, an airline A would prefer to have flight f ∈ FA land as early as possible, subject

to being on earlier than its earliest arrival time ef . Assigning f to a slot earlier than ef

violates feasibility. However airline A considers it strictly better to have f assigned to slot

s ≥ ef than to have f assigned to slot t > s (holding other flight assignments fixed).

This second restriction says nothing about how an airline evaluates the tradeoff between

moving flight f ∈ FA to an earlier (feasible) slot in exchange for moving g ∈ FA to a later slot.

Indeed one can imagine various classes of preferences that would express such a tradeoff.15

As a starting point, we consider a preference model reflecting the idea that each flight has

its own delay cost in landing which is linear in delay, and that airlines aggregate these costs

in order to evaluate landing schedules.

Specifically, each flight f ∈ FA has a weight wf > 0 that reflects the cost incurred by A

for each unit of time that flight f remains in the air. In fact it is more precise to think of wf

as a relative cost. Since there is no money in our model, this “cost reduction” is used only

to evaluate the tradeoff a single airline would face in moving f to an earlier slot in exchange

for delaying some g ∈ FA to a later slot.16 As an example, suppose A, with FA = {f, g},
wishes to evaluate two landing schedules, Π and Π′ where Π(f) = 5, Π(g) = 6, Π′(f) = 3,

Π′(g) = 9. In moving from Π to Π′, A is affected in two ways: a benefit of 2wf units for

moving f up two slots, but a cost of 3wg units for moving g down three slots. Therefore

15One can also imagine many real world details that would complicate such evaluations, such as whether
a flight has to meet some secondary deadline in order for passengers to make various connections, deadlines
after which pilots must take forced rest periods, etc. While such considerations probably exist, it seems that
accommodating such minor details in a real world setting would add considerable cost in terms of complexity
and practicality. Therefore we omit them.

16While weights yield preferences for each individual airline, we make no assumption about the compa-
rability of weights across airlines. One could interpret weights to represent actual dollar costs of delay, in
which case one may wish to analyze social welfare by minimizing total weighted delay across all airlines. This
is the focus of much of the operations literature discussed in Subsection 1.3. We focus instead on incentives
and property rights, so we need not assume that these weights are comparable across airlines.
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airline A strictly prefers Π′ to Π when 2wf − 3wg > 0.

Definition 1. A list of weights (wf )f∈F induces for each airline A ∈ A a preference

relation, રw
A, over feasible landing schedules as follows.

For all feasible landing schedules Π,Π′: Π રw
A Π′ ⇔

∑
f∈FA

wf (Π′(f)− Π(f)) ≥ 0.

Furthermore, if Π is feasible and Π′ is infeasible for A, then Π ≻w
A Π′.

We only consider the implementation feasible landing schedules, and it is easy to see

that Definition 1 uniquely defines a complete, transitive relation over such schedules. On

the other hand our analysis of incentives creates the possibility that, by misreporting certain

information, an airline’s flight could be assigned to an infeasible slot. To handle this, it

is enough for us to assume that any infeasible landing schedule is strictly worse than any

feasible landing schedule.17 Finally note that such preferences are selfish, in that an airline A

does not care how other airlines’ slots are allocated amongst themselves.

While there could be more general ways to model airline preferences,18 we believe that any

reasonable model analyzing delay tradeoffs among flights should at least contain our “linear-

weight” preferences as a special case, i.e. linear preferences cannot be ruled out ex ante.

Fortunately our results are robust under this position. First, following standard arguments

in mechanism design with restricted preference domains, our negative results are considerably

strengthened by restricting our domain to linear-weight preferences. Any negative result on

our domain can be immediately extended to any superdomain. Second, we show that the rule

yielding our possibility results continues to work on significantly larger preference domains.

We discuss this in the concluding Section 7.

3 Reassignment Rules and their Properties

To summarize the primitives so far, an Instance (of a Landing Slot Problem) is a tuple

I = (S,A, (FA)A∈A, e, w,Π
0,Φ0)

of slots, airlines, flights, earliest arrival times, flight weights, and an initial assignment

(Π0,Φ0). The initial assignment is relevant only to the extent that one wishes to respect

17This does not uniquely determine relative preferences over infeasible schedules, but this turns out not
to be relevant in the analysis.

18E.g. In the analysis of a landing schedule optimization problem, Ball and Lulli () consider convex delay
costs.
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some form of property rights with respect to such an endowment.19

A reassignment rule is a function ' that maps each instance I = (S,A, (FA)A∈A, e, w,Π
0,Φ0)

into a landing schedule '(I) that is feasible for I. We write 'f (I) to be the slot to

which flight f is assigned under instance I. (We may also write Π = '(I) in which case

Π(f) = 'f (I).)

Our objective is to find reassignment rules that improve efficiency while respecting prop-

erty rights and incentivizing airlines to truthfully report their respective parameters of the

instance.

3.1 Efficiency

The primary objective of the FAA’s Reassignment step in GDP’s is to avoid wasting slots

that have been vacated by canceled flights. Moving a flight into an earlier, (feasible) va-

cated slot unambiguously improves efficiency. The following definition is a straightforward

formalization of this.

Definition 2. A reassignment rule ' is non-wasteful if, for any instance I, there exists no

flight f ∈ F and no slot s ∈ S such that both ef ≤ s < 'f (I) (f can feasibly move up) and

'−1(s) = ∅ (s is vacant).

While nonwastefulness is a reasonable starting point in terms of efficiency, we begin our

analysis in Section 4 with the following standard notion, which is stronger.

Definition 3. A reassignment rule ' is (strongly) Pareto-efficient if for each instance

I = (S,A, (FA)A∈A, e, w,Π
0,Φ0) there exists no landing schedule Π′ such that (i) for all

A ∈ A, Π′ રw
A '(I), and (ii) for some A ∈ A, Π′ ≻w

A '(I).

One could consider an even stronger notion of economic efficiency: If weights represent the

actual monetary cost of flight delays per unit of time, then social efficiency would minimize

the sum of costs across all airlines. It is easy to see that such a requirement would be

essentially incompatible with any form of incentive condition in which airlines are free to

report these weights. Furthermore, without the use of monetary transfers this concept of

efficiency would not respect any minimal level of individual rationality or property rights.

Therefore we do not consider such a stronger condition.

19Furthermore, all of our results hold whether or not one assumes that the initial landing schedule is
feasible.
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3.2 Property rights

A standard property rights requirement in mechanism design—commonly called individual

rationality—guarantees an agent an outcome at least as good as its initial endowment. There

are two immediate ways to interpret this requirement in the context of landing slot problems,

depending on whether one allows an airline to first “optimize” the way it uses the slots it

initially owns.

Consider an initial assignment (Π0,Φ0) of some instance I. Airline A’s flights are initially

assigned via the landing schedule Π0, so if a rule outputs '(I), one should minimally require

'(I) રw
A Π0. This requirement is weak when one realizes that the initial schedule Π0 may not

optimally schedule A’s flights within A’s own slots, or that A may own additional (vacant)

slots under Φ0 to which A could schedule a flight. It therefore would be quite reasonable to

require that a rule weakly improve an airline’s welfare even after the airline optimizes the

initial scheduling of its own flights within its own portion of the landing schedule.20

We formalize only the former (weaker) version of the condition for two reasons. First,

it technically strengthens our negative results. Second, it can easily be checked that our

possibility results would continue to hold under the stronger version of the condition, as we

discuss in Remark 2 following Theorem 5.

Definition 4. A reassignment rule ' is individually rational if, for any instance I =

(S,A, (FA)A∈A, e, w,Π
0,Φ0) and any airline A, we have '(I) રw

A Π0.

3.3 Incentives

We consider various incentive properties that may be imposed on reassignment rules. Most

of these properties compare the output of a rule following some change in the parameters

of an instance I, e.g. the effect of an airline changing the report of its weights within list

w, or arrival times in e, etc. Therefore it is helpful to introduce the following “replacement

notation.” For any instance I = (S,A, (FA)A∈A, e, w,Π
0,Φ0), we write

Iw→w′ ≡ (S,A, (FA)A∈A, e, w
′,Π0,Φ0)

to be the instance which is simply I, but with weights w replaced with w′. Similar meanings

apply to Ie→e′ , etc.

The preferences of airlines are impacted directly by their flights’ weights w, but also

by their earliest arrival times e. We separately consider the consequences of an airline

20As discussed in Subsection 1.1 and Footnote 5, this right to “optimize” is explicitly granted by the FAA.
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misreporting these two types of information.

Definition 5. A reallocation rule ' is manipulable via earliest arrival times (or e-

manipulable) if there is an instance I = (S,A, (FA)A∈A, e, w,Π
0,Φ0), airline A ∈ A, flight

f ∈ FA, and an earliest arrival time e′f such that

'(Ie→e′) ≻w
A '(I)

where e′ is obtained from e by replacing ef with e′f .

Definition 6. A reallocation rule ' is manipulable via weights (or w-manipulable)

if there is an instance I = (S,A, (FA)A∈A, e, w,Π
0,Φ0), airline A ∈ A, flight f ∈ FA, and

weight w′f such that

'(Iw→w′) ≻w
A '(I)

where w′ is the same as w except with wf replaced by w′f .

The applicability of the above two conditions depends on the degree to which these pa-

rameters are observable to the planner. In problems where both e and w are privately known

only by their respective airlines, both incentives conditions are important. Interpretation

can be important here. For example, if one interprets weights w as merely the (observable)

fuel cost of keeping a particular type of aircraft in the air, then w-manipulability may be

viewed as less important. But one might also consider other privately known components to

enter w, such as the potential need to change flight crews, future use of the aircraft, etc. If

these factors are privately known, the condition becomes more important.

Our last main incentives property concerns the “report” of the objects themselves being

reallocated: slots. Slots are vacated when an airline decides to cancel a flight. When

this cancelation is sufficiently timely (i.e. before a reallocation rule is applied), the slot is

recognized as vacant, and it can be reallocated by the rule. On the other hand, if the flight

cancelation occurs sufficiently late, there can be the possibility that the slot goes unused

(e.g. if no other flights depart from their airports sufficiently early so as to be able to arrive

in time to use the vacated slot).

If an airline possess a slot that it knows it cannot use, it should obviously be given the

incentive to reveal that information so that the slot can be used by another airline. It would

then be perverse if an airline were to find that it could benefit from failing to reveal that a

particular slot is going to go unused.21

21Interestingly this concern was raised in an internal Department of Transportation memo cited in Schum-
mer and Vohra (2012).
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To rule out this sort of potential for manipulation, we consider two separate conditions.

The first appears here, while the second is given in Subsection 5.3. In words, this condition

states that a manipulation occurs whenever an airline can improve its landing schedule by

permanently destroying a vacant slot that it initially owns.

Definition 7. A reallocation rule ' is manipulable via slot destruction if there is an

instance I = (S,A, (FA)A∈A, e, w,Π
0,Φ0), airline A ∈ A, and slot s ∈ S such that

(i) s ∈ Φ0(A) (A owns s),

(ii) ∄f ∈ F such that Π0(f) = s (s is initially vacant), and

(iii) '(IS→S∖{s}) ≻w
A '(I).22

We should clarify the connection between slot destruction and an airline’s failure to report

a flight cancelation. Imagine that an airline claims a “dummy flight” d (which it intends to

cancel) occupies slot s, and that ed = s with arbitrarily large wd. Any individually rational

rule would have to continue to assign d to s while (possibly) reassigning other flights. Since

this effectively removes d and s from the economy, the condition removes the potential for

any such potential manipulation.

Thinking about a more dynamic model—in which reallocation rules could be applied

iteratively—leads to a natural question: If an airline announces the cancelation of flight d

only after the reallocation rule is applied, then what ultimately happens to slot s? At the

time d is canceled, the owner of s can keep s for another of its flights, if feasible, so it is never

permanently destroyed. This argument would imply that Definition 7 (iii) is too strong in

that it does not allow A to move one of its flights from its slot in '(IS→S∖{s}) to s.

Using concepts introduced in Subsection 5.3 we allow for this, leading to a weaker def-

inition of manipulation (i.e. a stronger incentive compatibility condition) in Definition 13.

Because it leads to possibility, that result also is stronger in the use of Definition 13.

4 Efficient Rules and Manipulability

We begin by considering the tradeoff between efficiency and various forms of incentive com-

patibility. As we see below, the tradeoff is stark. We independently consider three separate

22To be clear, IS→S∖{s} is instance I but without slot s, so s is also deleted from Φ0).
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forms of manipulation, and show that any one of them is incompatible with Pareto-efficiency,

as long as we respect some minimal level of property rights.23

While there are plenty of models in which efficiency conflicts with axioms such as strategy-

proofness, it is worth pointing out how the results of this section are particularly strong.

First, our model specifies a fairly restrictive set of preferences. While airlines have preferences

over sets of slots, we assume that they are representable by a linear weighting. In addition

there is some commonality of preferences among airlines, in that “earlier slots are better”

(subject to time feasibility). Relative to many models in the literature, this yields a relatively

narrow domain of preferences.

Secondly and perhaps more importantly, we are restricting airlines’ presumed flexibility

in manipulating, by considering the consequences of only a single manipulability condition

at a time. To elaborate on this point, an airline’s preference over sets of slots depends both

on earliest arrival times (e) and flight weights (w). The analog of a full strategy-proofness

condition in this model would allow airlines the flexibility to misreport either (or both) of

these parameters, since both of them are components of a preference relation. When we

allow an airline to misreport only one of these variables we restrict the dimension in which

an airline misreports its preferences. In this sense, the results of this section are stronger

than analogous results in the literature.24

Our first result shows that, under the basic requirement of individual rationality, Pareto-

efficiency leads to e-manipulability.

Theorem 1. If a rule is Pareto-efficient and individually rational, then it is manipulable

via earliest arrival times.

Proof. Consider the instance I described as follows.

Slot Flight Airline Earliest Weight

1 b1 B 1 1

2 a2 A 1 3

3 a3 A 1 2

4 b4 B 3 1.5

5 a5 A 5 1.75

6 b6 B 5 1.75

23The uninteresting examples of (sequentially) dictatorial rules, which ignore initial landing schedules,
can be cited to achieve both efficiency and non-manipulability of all kinds, at the extreme cost of depriving
airlines any level of property rights whatsoever.

24Cite impossibility of spf+stable rules.
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There are four individually rational ways to allocate three slots to airline B that are

feasible with respect to the ef ’s. Assigning either {1, 4, 6} or {2, 3, 6} to B would be Pareto-

dominated by assigning {2, 4, 5} to B. Assigning either {2, 4, 5} or {3, 4, 5} to B would yield

an efficient, individually rational assignment.

Let ' be an individually rational, Pareto-efficient rule. We must have 'B(I) ∈ {{2, 4, 5}, {3, 4, 5}}.
Case 1: 'B(I) = {2, 4, 5}. In this case a2 is assigned to slot 1, a3 is assigned to slot 3,

and a5 is assigned to slot 6.

Let I ′ denote the instance that is identical to I except that A reports e′a2 = 2 (without

altering the other earliest arrival times). There is only one Pareto-efficient and individually

rational assignment for I ′: a3 is assigned to slot 1, a2 is assigned to slot 2, and a5 is assigned

to slot 6. Airline A prefers this assignment to the one he receives under '(I). Therefore A

is able to gain from misreporting ea2 .

Case 2: 'B(I) = {3, 4, 5}. In this case b4 is assigned to slot 3, b1 is assigned to slot 4,

and b6 is assigned to slot 5.

Let I ′ denote the instance that is identical to I except that B reports e′b6 = 6 (without

altering the other earliest arrival times). There is only one efficient and individually rational

assignment for I ′: b1 is assigned to slot 2, b4 is assigned to slot 3, and b6 is assigned to slot 6.

Airline B prefers this assignment to the one he receives under '(I).

In both cases ' is manipulable by misreporting earliest arrival times.

Remark 1. It is worth noting an implicit assumption in the statement and proof of The-

orem 1 which gives it a stronger interpretation. Under our definitions, when an airline

misreports its earliest arrival times, it is required to abide by whatever landing schedule is

output by the rule. One can imagine a stronger non-manipulability condition which would

discourage an airline from misreporting information when it can subsequently rearrange

flights amongst the slots it has been allocated. Such a definition may be more appropriate

since airlines are permitted to perform such rearrangements (see also Definition 8) in the

real world. Allowing for this type of 2-step manipulation would result in an even stronger

non-manipulability condition. On the other hand, such manipulation may be more easily

detectable (since manipulating airlines would more frequently be reshuffling their schedules

in ways that would initially appear to be infeasible or inefficient). Regardless of this possi-

bility, Theorem 1 shows that Pareto-efficient rules are manipulable even if airlines cannot

reshuffle their flights after the mechanism has operated. A similar observation applies to the

other two theorems in this section.

The second way for an airline to misreport preference-relevant information is through

weights w. We show that such manipulations also are a consequence of Pareto-efficiency
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and individual rationality.

Theorem 2. If a reassignment rule is Pareto-efficient and individually rational, then it is

manipulable via weights.

Proof. Consider the instance I described as follows.

Slot Flight Airline Earliest Weight

1 b1 B 1 1

2 a2 A 1 4

3 a3 A 2 4

4 a4 A 4 3

5 b5 B 4 3

Let ' be an individually rational, efficient rule. It is straightforward to verify that there

are only two efficient and individually rational assignments for I. In one, B’s flights are

assigned slots 2 and 4; in the other, they are assigned slots 3 and 4. Clearly B prefers the

former and A prefers the latter. We show that regardless of which is selected by ', one of

the airlines can manipulate '.

Case 1: 'B(I) = {3,4}. Let I ′ denote the instance that is identical to I except

that B reports a weight of w′1 = 2 (without altering the other weights). There is only one

efficient and individually rational assignment for I ′: B is assigned slots 2 and 4. Since

'B(I ′) = {2, 4} PB {3, 4} = 'B(I), airline B benefits from misrepresenting w1 at I.

Case 2: 'B(I) = {2,4}. Let I ′ denote the instance that is identical to I except that

A reports a weight of w′2 = 2 for flight (without altering the other weights). There is only

one efficient and individually rational assignment for I ′: B is assigned slots 3 and 4. Since

'A(I ′) = {1, 2, 5} PA {1, 3, 5} = 'A(I), airline A benefits from misrepresenting w2 at I.

In either case ' is manipulable via misreported weights.

Our third result in this section concerns an airline’s potential incentive to effectively

remove a slot from the pool of slots being re-assigned. If an airline has the ability to remove

slots from the system, we show that any Pareto-efficient and individually rational rule must,

at some instance, give an incentive to do this. Our proof uses an example that hinges on a

potential 3-airline trade of six slots. Two airlines (A and B) would gain by this trade, but

the third airline (C) would lose. However, both A and B own vacant slots, either or both of

which can be used to compensate C for his loss in the 3-way trade. An efficient rule thus

forces either A or B (or both) to “pay” C to partake in the trade. But by destroying its slot,

A (or B) can make C’s compensation too high to pay (with respect to individual rationality,

forcing the efficient rule to make only the other airline (B or A) to compensate C instead.
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Theorem 3. If a reassignment rule is Pareto-efficient and individually rational, then it is

manipulable via slot destruction.

Proof. Consider the instance I described in Table 1. Note that airline D plays the role of

a “dummy airline,” in that D’s flights already occupy their most preferred slots. Individual

rationality thus forces a rule not to move any of D’s flights.

Slot Flight Airline Earliest Weight

1 a1 A 1 w1 = 3

2 b2 B 1 w2 = 4

3 b3 B 3 w3 = 3

4 c4 C 3 w4 = 2

5 c5 C 5 w5 = 3

6 a6 A 5 w6 = 4

7 a7 A 7 w7 = 0.3

8 d8 D 8 w8 = 1

9 d9 D 9 w9 = 1

10 ∅a A

11 c11 C 7 w11 = 0.35

12 b12 B 12 w12 = 0.3

13 d13 D 13 w13 = 1

14 d14 D 14 w14 = 1

15 ∅b B

16 c16 C 16 w14 = 0.35

Table 1: Main example in the proof of Theorem 3.

Within slots 1–6, three pairwise trades amongst airlines A, B, and C are possible. If all

three are performed, A and B each gain 1 unit while C loses 1 unit. There are two ways

to compensate C for this loss. One is for A to move a7 down to slot 10, giving c11 slot 7.

(What plays a role later, however, is that A would not be willing to move down to slot 11.)

Similarly B could compensate C via slot 12. We shall show that if A is compensating C at

slot 7, then A can gain by destroying slot 10. A similar argument applies to B and slot 15.

Let ' be an individually rational, Pareto-efficient rule. It can be checked that only

the three landing schedules in Table 2a satisfy the conditions corresponding to individual

rationality and Pareto-efficiency for instance I, so '(I) must be one of them. The bottom

of the table shows the relative gain in terms of weights for each airline, relative to the initial

landing schedule.

We show that regardless of which of the three landing schedules is selected by ', airline

A or airline B can manipulate ' by destroying its vacant slot. First suppose that '(I) ∈
{Π2,Π3}. Let IS→S∖{10} be the instance obtained from I by destroying A’s slot 10. There
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Slot Π1 Π2 Π3

1 b2 b2 b2
2 a1 a1 a1
3 c4 c4 c4
4 b3 b3 b3
5 a6 a6 a6
6 c5 c5 c5
7 a7 c11 c11
8 d8 d8 d8
9 d9 d9 d9
10 c11 a7 a7
11 − − −
12 c16 b12 c16
13 d13 d13 d13
14 d14 d14 d14
15 b12 c16 b12
16 − − −
A +1 +0.1 +0.1
B +0.1 +1 +0.1
C +0.75 +0.75 +1.8

(a)

Slot Π4 Π5

1 b2 b2
2 a1 a1
3 c4 c4
4 b3 b3
5 a6 a6
6 c5 c5
7 a7 c11
8 d8 d8
9 d9 d9
10 (destroyed) a7
11 c11 −
12 c16 b12
13 d13 d13
14 d14 d14
15 b12 (destroyed)

16 − c16
A +1 +0.1
B +0.1 +1
C +0.4 +0.4

(b)

Table 2: (a) The three possible schedules chosen by an individual rational, Pareto-efficient
rule. They differ only in slots 7, 10, 12, and 15. (b) Two landing schedules following slot
destruction in I.
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is only one landing schedule for IS→S∖{10} that satisfies the conditions for Pareto-efficiency

and individual rationality. It is Π4 described in Table 2b.

Therefore '(IS→S∖{10}) = Π4. However, A’s gain of one unit is greater than his gain at

Π2 or Π3 above, i.e. 'A(IS→S∖{10}) ≻w
A 'A(I). Since airline A benefits from destroying its

vacant slot 10, ' is manipulable by slot destruction in this case.

Therefore we must have '(I) = Π1. Similar to the argument above, let IS→S∖{15} be the

instance obtained from I when airline B destroys slot 15. There is only one landing schedule

for IS→S∖{15}, namely Π5, that satisfies the conditions for Pareto-efficiency and individual

rationality.

Therefore '(IS→S∖{15}) = Π5. However, B’s gain of one unit is greater than its gain at Π1

above, i.e. 'B(IS→S∖{15}) ≻w
B 'B(I). Since airline B benefits from destroying its vacant

slot 15, ' is manipulable by slot destruction.

5 FAA-conforming Rules

The previous section shows that if an individually rational reassignment rule is Pareto-

efficient, then it is vulnerable to each of three separate kinds of manipulation. In this

section, we show that some degree of non-manipulability can be recovered by replacing

Pareto-efficiency with the more modest goal of non-wastefulness. In fact we provide a

single class of rules each of which simultaneously satisfies two of our incentives properties.

Furthermore, this rule is simple—in a sense to be defined below—implying that part of its

computation can be decentralized to the airlines in precisely the same way that the FAA’s

current reassignment rule does. Finally, the class of rules satisfies a basic procedural property

right given to the airlines by the FAA.

In this section, we begin by motivating our definition of FAA-conforming rules. Such rules

achieve the basic objective of non-wastefulness, satisfy the property right of self-optimization

defined below, and use a restricted set of information about instances (simple, defined below).

We show that, unfortunately, such rules must be manipulable by arrival times. We then

provide the class of rules—based on deferred acceptance—that satisfies the other incentives

requirements.

5.1 FAA Conformation

One can think of two main ways in which flight weight information (w) can be used to

improve efficiency: to make both inter- and intra-airline “trades.” By comparing relative

flight weight ratios across different airlines, one can find Pareto-improving (inter-airline)
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trades. Unfortunately, Theorems 1–3 show that the use of weights to execute all such

efficient trades conflicts with non-manipulability. By comparing weights within a single

airline’s schedule, the airline can optimally arrange its own flights within its own portion of

the landing schedule. As we shall see, this second use of weight information need not conflict

with two of our three non-manipulability conditions.

Of course a reassignment rule could completely ignore flight weight information alto-

gether. Consider such a rule operating on the following trivial instance.

Slot Flight Airline Earliest Weight

1 B

2 a2 A 1 w2

3 a3 A 1 w3

A non-wasteful rule assigns the flights to the first two slots. If the rule ignores weight

information and assigns a2 to slot 1, then the rule can be manipulated (when w2 < w3) by

misreporting e′a2 = 2. It is similarly manipulable (when w2 > w3) if it assigns a3 to slot 1.

This example makes a simple point about manipulability in environments where agents

(airlines) are obligated to follow the landing schedule posted by the reassignment rule. On

the other hand it may not be convincing if one presumes that airline A should have the right

to swap flights a2 and a3 as it wishes. Indeed this is the case in the application to the U.S.

F.A.A., where airlines are granted this right by law. In such settings, it is clear that, after

a reassignment rule operates, each airline will rearrange its own part of the schedule in an

ideal way. We formalize this by calling an assignment self-optimized when each airline is

using its own slots in the best way possible.

Definition 8. An assignment (Π,Φ) is self-optimized (for instance I) if there exists no

airline A and no landing schedule Π′ such that both (i) Π′ ≻w
A Π and (ii) Π′(f) ∈ Φ(A)

for all f ∈ FA. Given any ownership function Φ (that can yield a consistent, feasible

landing schedule), denote by SO(Φ, I) the set of landing schedules Π such that (Π,Φ) is

self-optimized for I.

We also say that a landing schedule Π is self-optimized if it is part of a self-optimized

assignment (Π,Φ) for some Φ. A reassignment rule ' is self-optimized if it always outputs a

self-optimized landing schedule (with respect to the reported parameters).

Our motivation for this condition is strong: when each agent is given the procedural right

to rearrange its own part of the schedule (as with the FAA), it is without loss of generality to
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restrict attention to reassignment rules that output self-optimized landing schedules. This

follows from a revelation principle type of argument.25

A second attribute of rules used by the FAA regards not only the use but in fact the

communication of weight information. The FAA does not directly solicit information from

airlines about their willingness to make tradeoffs.26 Of course, airlines implicitly use such

information when they create self-optimized portions of their landing schedules. Therefore,

in practice, weight information is used only to self-optimize. Phrased differently, weight

information cannot impact the allocation of slots to airlines, though it can impact the

assignment of any single airline’s flights to its slots. Below we define such rules as simple.27

Definition 9. A reassignment rule is simple if for any instances I and I ′ with weight profiles

w and w′, if I ′ = Iw→w′ then for all A ∈ A, 'A(I) = 'A(I ′). In words, if an instance is

altered only by a change of weights, then no airline consumes a different set of slots.28

To be clear, there are two separate motivations for this restriction on rules. The first is the

applied motivation given above, regarding the FAA’s current procedures. The need to report

preference information can increase complexity (and hence operational costs) for the airlines.

The FAA currently uses a simple rule (the Compression Algorithm), and Schummer and

Vohra (2012) propose an alternative simple rule based on the Top Trading Cycle algorithm.

A second (partial) theoretical motivation involves the negative results of Section 4, show-

ing that weight information cannot be used to achieve full efficiency in the presence of any

of our incentive constraints.29

Finally, since the FAA’s most basic of motivations is to avoid slots going to waste, the

following definition is justified by the arguments above.

25The argument is as follows. Suppose that a rule assigns slots to airlines and that each airline may
reassign its assigned slots amongst its own flights. Further suppose that, conditional on this reassignment
right, each airline has a dominant strategy of truthfully reporting preference information (e.g. e’s or w’s) to
the rule. Then, such incentives would be preserved if the airline were forced to communicate its preferences
to a trustworthy proxy who is responsible for both (i) reporting the airline’s preferences to the rule and (ii)
afterwards, optimally reassigning that airline’s slots to its flights. Hence in our analysis of rules satisfying
such incentive compatibility conditions, it is without loss of generality to suppose that the rule chooses
self-optimized outcomes on behalf of the airlines, based on their reported preference information.

26One exception to this statement is the Slot Credit Substitution procedure, which has been described
(Robyn (2007)) as unwieldy; see the discussion in Schummer and Vohra (2012).

27A more accurate yet tedious term could be “semi-weight-invariant” rules.
28A stronger version of this definition would require '(I) = '(I ′), i.e. each flight to be assigned the same

slot. Such rules cannot be self-optimized.
29A middle ground is to search for incentive compatible rules that capture some but not all efficiency from

trade based on w. Such rules would be more complex than current FAA procedures, but is still an interesting
question we leave to future research.
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Definition 10. A reassignment rule is FAA-conforming if it is non-wasteful, simple, and

self-optimizing.

5.2 Manipulability through arrival times

Since simplicity is a form of invariance with respect to the airlines’ reported weights w, it is

not surprising that it essentially rules out w-manipulability. If a rule is simple then either it

is non-manipulable by weights, or it can be used to trivially construct another simple rule

that is Pareto-dominating.

Observation. Let ' be a simple reassignment rule. Define '′ to be a self-optimized rule

that satisfies {'f (I) : f ∈ FA} = {'f (I) : f ∈ FA} for each I and for each A ∈ A. Then '′

is both simple and not manipulable by weights.

The proof of this is obvious. What is less obvious, however, is whether such a rule can

also be immune to other forms of manipulation: misreporting earliest arrival times or by

slot destruction. Our answers to these two questions are mixed. No such rule can avoid

the former, which we now show. The good news, however, is that a class of simple rules is

immune to manipulation by slot destruction (and more), as we show in Subsection 5.3.

Theorem 4. If an FAA-conforming reassignment rule is individually rational, then it is

manipulable via earliest arrival times.

Proof. Consider instances I and I ′ defined by weights w and w′ in the following table.

Slot Flight Airline Earliest e Weight w Weight w′

1 − A

2 − A

3 b3 B 1 1 1

4 c4 C 1 1 1

5 b5 B 2 5 1

6 c6 C 3 5 5

7 b7 B 4 1 7

Let ' be a simple, non-wasteful reassignment rule. Let 'B(I) denote the three of those

slots assigned to B’s flights, i.e. 'B(I) = {'b3(I), 'b5(I), 'b7(I)}. Since ' is non-wasteful, it

must assign all five flights to slots 1–5, so 'B(I) ⊂ {1, 2, 3, 4, 5}. Define 'C(I) and 'B(I ′)

similarly. Since ' is simple, note that 'B(I ′) = 'B(I) (although 'f (I) ∕= 'f (I ′) is certainly

possible).
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There are
(
5
3

)
= 10 candidate subsets to consider for 'B(I), but B’s flights cannot feasibly

be assigned to {1, 2, 3} or {3, 4, 5}. We show that for each of the remaining eight possibilities,

' must be e-manipulable in some way.

Case 1: 'B(I) is {1, 3, 4}, {1, 3, 5}, or {1, 4, 5}.
In this case 'b5(I) ≥ 3. From instance I, consider airline B misrepresenting eb3 to be

e′b3 = 2 (resulting in Ĩ = Ieb3→e′b3
). By non-wastefulness, 'c4(Ĩ) = 1. With simplicity (and

self-optimization) this yields 'b5(Ĩ) = 2. This improvement for b5 gives B a relative gain of at

least 5 (weight) units. It is simple to check that B can lose at most 4 units combined through

changes in the assignment of b3 and b7. Since B would gain from such a manipulation, this

rules out Case 1. In all remaining cases, B must receive slot 2.

Case 2: 'B(I) is {2, 3, 4} or {2, 3, 5}.
In this case 'C(I) is {1, 5} or {1, 4}, so 'c4(I) = 1 and 'c6(I) ≥ 4. From instance

I, consider airline C misrepresenting ec4 to be e′c4 = 3 (resulting in Ĩ = Iec4→e′c4
). By

non-wastefulness B receives the first two slots, and either 'c4(Ĩ) = 3 or 'c6(Ĩ) = 3, with

self-optimization implying the latter. This improvement for c6 gives C a relative gain of at

least 5 (weight) units, while C can lose at most 4 units through the change in the assignment

of c6. Since C would gain from such a manipulation, this rules out Case 2. In all remaining

cases, C must receive slot 3.

Case 3: 'B(I) = {2, 4, 5}.
In this case 'b5(I) = 2, while b3 and b7 go to slots 4 and 5 (the order being irrelevant).

From instance I, consider airline B misrepresenting eb3 to be e′b3 = 3 (resulting in Ĩ =

Ieb3→e′b3
). By non-wastefulness, 'c4(Ĩ) = 1 and 'b5(Ĩ) = 2.

We also show 'b3(Ĩ) = 3. Suppose not, so 'b3(Ĩ) > 3. Consider yet another instance

I ′′, obtained from Ĩ by giving sufficiently high weight w′′b3 to b3. By simplicity, B’s flights

would be allocated the same set of slots as in Ĩ, and in particular B would not be assigned

slot 3 at I ′′. Since this implies 'b3(I
′′) > 3, '(I ′′) would violate individual rationality for B.

Therefore 'b3(Ĩ) = 3.

But then at worst 'B(Ĩ) = {2, 3, 5}, i.e. 'b5(I) = 'b5(Ĩ), while B gains via the other

two flights. Since B would gain from such a manipulation, this rules out Case 3. In the two

remaining cases, B must receive slot 1.

Case 4: 'B(I) = {1, 2, 5}.
Recall that simplicity then implies 'B(I ′) = {1, 2, 5}, so 'b7(I

′) = 5. From instance I ′,

consider airline B misrepresenting eb5 to be e′b5 = 4 (resulting in Ĩ = I ′eb5→e′b5
). By non-

wastefulness, flights c4 and b3 are assigned the first two slots (in some order) and 'c6(Ĩ) = 3.

As B receives slots 4 and 5, self-optimization results in 'b7(Ĩ) = 4. This improvement for
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b7 gives B a relative gain of 7 units, while B must lose strictly fewer than that through the

change in the assignments of b3 and b5. This rules out Case 4.

Case 5: 'B(I) = {1, 2, 4} (so 'C(I) = {3, 5}).
By self-optimization, 'c6(I) = 3. From instance I, consider airline C misrepresenting ec4

to be e′c4 = 4 (resulting in Ĩ = Iec4→e′c4
). By non-wastefulness, 'b3(Ĩ) = 1, 'b5(Ĩ) = 2, and

'c6(Ĩ) = 3.

We also show 'c4(Ĩ) = 4. Suppose not, so 'c4(Ĩ) = 5. Consider yet another instance I ′′′

obtained from Ĩ by giving sufficiently high weight w′′′c4 to c4. By simplicity, C’s flights would

be allocated the same set of slots as in Ĩ, and in particular C would not be assigned slot 4.

Since this implies 'c4(I
′′′) = 5, '(I ′′′) would violate individual rationality for C. Therefore

'c4(Ĩ) = 4.

Since 'c6(Ĩ) = 'c6(I) and ec4 ≤ 'c4(Ĩ) < 'c4(I), ' is e-manipulable, completing the

proof.

While no reasonable simple rule can avoid e-manipulability, there are weaker forms of

incentive compatibility that can be achieved. Schummer and Vohra (2012) exhibit two rules

that cannot be manipulated—by an airline misreporting ef ’s—in such a way as to benefit

all flights of that airline. That is, if any flight of an airline gains through such a misreport,

another flight must move to a worse slot. One of those rules is the one currently used by

the FAA, while the other is based on the classic Top Trading Cycles algorithm. We consider

this condition in Section 6

5.3 Deferred Acceptance with Self Optimization

In order to define rules based on deferred-acceptance, we need to introduce two preliminary

concepts: airline choice functions over sets of slots, and the slots’ priority orders over air-

lines. We begin with the former, which slightly extends the concepts in Roth (1984) to our

environment, where each airline cares about how its flights are assigned within the set of

slots it receives.

5.3.1 Choice sets and priorities

Firstly, to define choice functions, consider an airline A ∈ A with flights FA and preferences

≻w
A. Given a set of slots T ⊆ S, how would A choose to assign its flights within T? As-

suming it can feasibly do so, determining A’s “self-optimal” assignment of FA to T typically

requires knowing weights wf , f ∈ FA. It is simple to see, however, that even without weight

information, one can determine the subset of T that A would choose to occupy. Clearly A
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would not want to assigning some f ∈ FA to a slot t while leaving vacant some slot s with

ef ≤ s < t. This necessary condition is sufficient to identify the unique subset of T that A

would choose to occupy, which allows us to define choice functions as follows.

Definition 11. Fix an instance I, airline A, and set T ⊆ S such that A’s flights can feasibly

be scheduled within T . Airline A’s choice function CA(T ) over such sets T ⊆ S is the

output of the following simple algorithm.

∙ Order flights in FA in increasing order of ef (break ties arbitrarily).

∙ Assign flights sequentially to the earliest slot in T that each flight can feasibly use.

∙ Denote the set of occupied slots CA(T ) ⊆ T .

It is straightforward to see that if an airline A could assign its flights (self-optimally)

within T ⊆ S, then its flights would occupy CA(T ).30 It turns out that choice functions in

this environment satisfy the classic substitutability condition; see Kelso and Crawford (1982)

and Roth (1984).

Secondly, to define priority orderings that parameterize deferred-acceptance-based rules

in our model, it is simplest to think of the set of airlines A as being fixed.31 Let ℐ(A) denote

the domain of instances in which A is the existing set of airlines. For any positive integer

(interpreted as a potential slot) s ∈ {1, 2, . . .}, a priority order (on A), ≫s, is simply

a linear order over the airlines in A. For an instance I ∈ ℐ(A), (≫s)s∈S is a profile of

priority orders.

5.3.2 Defining DASO Rules

For a fixed set of airlinesA and profile of priorities (≫s), we define a rule on the domain ℐ(A).

The rule is based on the deferred acceptance algorithm, augmented with a self-optimization

step. Recall from Definition 8 that SO(Φ, I) is the set of self-optimized landing schedules

for I with respect to slot ownership function Φ.

Definition 12 (DASO rules). For a set of airlines A and profile of priorities (≫s) on A,

the deferred acceptance with self-optimization (DASO) rule (with respect to ≫)

associates with every instance I ∈ ℐ(A) the landing schedule computed with the following

“DASO algorithm.”

30Of course the flights may not be assigned as in this algorithm, as the airline may wish to swap the
positions of two or more flights.

31It becomes straightforward to generalize the definition to a domain in which this set varies.
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Step 0: Each slot s proposes to the airline A that owns it (s ∈ Φ0(A)). Let

T 0
A denote the slots who proposed to any A ∈ A.32 For each A ∈ A, determine

CA(T 0
A). We say that A rejects each slot s ∈ T 0

A ∖CA(T 0
A). If there are no rejected

slots, proceed to the Self-optimization step.

Step k = 1, . . .: Each slot s that was rejected in step k − 1 proposes to the

highest-ranked airline in ≫s that has not already rejected s in some earlier step.

(If no such airline exists, s is to be permanently unassigned.) Let T k
A denote the

slots who proposed to A in step k plus those in CA(T k−1
A ). For each airline A,

determine CA(T k
A). We say that A rejects each slot s ∈ T k

A ∖CA(T k
A). If there are

no rejected slots, proceed to the Self-optimization step.

Self-optimization step: For each airline A, assign A’s flights to the last CA(T k
A)

so that the resulting landing schedule is self-optimized. Break ties among equally-

weighted flights by preserving their relative order in Π0.33

The DASO algorithm is simply the well-known algorithm of Gale and Shapley (1962) with

two adjustments: an instance-specific adjustment of priorities in Step 0, and the addition

of a self-optimization step. It is easily seen to end in a finite number of steps based on the

known finiteness of (classic) deferred acceptance. Some further remarks are in order.

First, having slots propose to owners in Step 0 plays two related roles. It guarantees the

final landing schedule to satisfy individual rationality, and guarantees each airline to have a

feasible set of slots to choose form in every step. (E.g. if no slot proposed to A in the first

step, then A would not have feasible sets to choose from.)

Secondly, we have described what could be called the “slot proposing” version of the

deferred acceptance algorithm. An alternate “airline proposing” version of the algorithm

would have airlines proposing to their favorite sets of slots, and slots accepting proposals only

from their most-preferred airline. Indeed such a formulation would seem more appropriate

to readers familiar with the matching literature, since such an algorithm would tend to result

in better outcomes for the airlines.34 In this model, however, it turns out that both versions

of the algorithm would produce precisely the same matching.

Observation. Fixing priorities and an instance, an airline-proposing version of the DASO

32In fact in Step 0, T 0
A = Φ0(A). The notation is not redundant is later steps.

33This tie-breaking is irrelevant other than to simplify exposition in proofs and to simplify a welfare
statement in Theorem 6.

34An even more basic question is whether such an algorithm would be well-defined. It can be easily shown
(see online appendix) that airline preferences in our model satisfy the classic substitutability condition, which
Roth (1984) invokes to compare college- and student-optimal stable outcomes.
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algorithm would yield precisely the same outcome as the slot-proposing version described

above.

This general statement requires a proof (see online appendix), though it follows from an

intuitive induction argument.35 In terms of exposition, however, we have stated DASO using

the slot-proposing description, which makes our proofs easier to state.36

5.3.3 Results

We begin with the straightforward observations that a DASO rule satisfies the following

three properties.

Theorem 5. For any profile of priorities, the corresponding DASO rule is non-manipulable

via weights, individually rational, and non-wasteful.

Proof. The algorithm makes no use of weights information until the Self-optimizing step,

by which time the set of slots to be received by any airline A ∈ A has been fully determined.

Subject to the constraint that A receives precisely that set of slots, the Self-optimization step

uses weights only to give A its most-preferred landing schedule. Therefore it is obviously in

an airline’s best interests to report this information truthfully.

In Step 0 of the algorithm, each airline chooses its favorite set of slots from amongst

those which it owns (under the implicit assumption that it may assign flights to the set in

a self-optimized way). At each subsequent step, an airline either keeps its current set or

selects a better one. Hence the rule is individually rational. It is obvious that the rule is

non-wasteful.

Remark 2. DASO rules satisfy the stronger version of individual rationality discussed in

Subsection 3.2. Namely, a DASO rule yields an outcome that any airline A (weakly) prefers

to what A could achieve by only rearranging its flights within Φ0(A).

The following lemma helps us prove the main result of this section. It states that an

airline A never “regrets” rejecting a slot s at some step of the algorithm, in the sense that

if the algorithm later assigns A’s flights to some set of slots T , then A could not benefit

35Specifically, suppose that the choice of proposers is irrelevant in allocating the first s−1 slots to airlines.
Then of the remaining slots, slot s is considered “best” (in a well-defined sense due to substitutability)
by all of the airlines that can still use s (subject to the allocation of the first s − 1 slots). Therefore the
highest-ranked such airline will receive s regardless of who is doing the proposing.

36Another property specific to the slot-proposing version is that each step of the algorithm yields a feasible
landing schedule.
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by replacing some s′ ∈ T with s.37 This result is similar to Proposition 3 (“Rejections are

final”) in Roth (1984).

Lemma 1. Fix an instance I and a DASO rule '. Suppose airline A ∈ A and slot s ∈ S

satisfy s ∈ T k
A ∖ CA(T k

A) (s was rejected by A) in some step k of the DASO algorithm. Then

for all steps ℓ > k of the algorithm, s /∈ CA(T ℓ
A ∪ {s}). In particular, for all f ∈ FA, ef ≤ s

implies 'f (I) < s.

Proof. Denote the flights of A that could feasibly use s as GA = {f ∈ FA : ef ≤ s}. If A

rejects s in step k (s /∈ CA(T k
A)), then T k

A contains at least ∣GA∣ slots strictly earlier than s

(see the algorithm in Definition 11).

This implies that CA(T k
A) contains ∣GA∣ slots strictly earlier than s. At every step of the

algorithm ℓ ≥ k, if CA(T ℓ
A) contains at least ∣GA∣ such slots, then so do T ℓ+1

A and CA(T ℓ+1
A ).

Furthermore, at the conclusion of the algorithm, each f ∈ GA satisfies 'f (I) < s.

Our main positive result is that DASO rules induce airlines to truthfully report flight

cancelations. Not only are they immune to manipulation via slot destruction as defined

earlier, but an airline cannot even manipulate by “hiding” a vacant slot from the rule and

later consuming it (even in a self-optimized way). We formalize this as follows.

Definition 13. A reallocation rule ' is manipulable via slot hiding if there is an instance

I = (S,A, (FA)A∈A, e, w,Π
0,Φ0), airline A ∈ A, and slot s ∈ S such that

(i) s ∈ Φ0(A) (A owns s),

(ii) ∄f ∈ F such that Π0(f) = s (s is initially vacant), and

(iii) ∃Π such that Π ≻w
A '(I) and

∪
FA

Π(f) ⊂
(∪

FA
'f (IS→S∖{s})

)
∪ {s}.

Without loss of generality one can interpret Π in (iii) to be a self-optimized landing

schedule when A has access to the slots he is allocated at IS→S∖{s} plus s.

DASO rules are not manipulable via slot hiding, but we prove an even stronger result:

if an airline attempts to manipulate by hiding a slot, then no airline can be made better

off. Such a strong result is important in environments where group incentives are relevant.

Even if one airline had the ability to somehow “compensate” another airline to postpone the

37One should be careful here: an airline could regret not having rejected a slot, in the sense that if it had,
then it would have received a better set of slots later. Thus this is a limited no-regret result: a truthfully
rejected slot later must be considered useless by the airline.
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announcement of a flight cancelation, our result shows that such an arrangement cannot be

beneficial.38

To be clear what the result states, given a set of slots S we are taking a priorities

(≫s)s∈S as given. After supposing that an airline A hides some slot ℎ ∈ S, we make a type

of consistency assumption that the DASO rule simply uses the set of priorities (≫s)s∈S∖{ℎ}

to compute the outcome for the new instance (without ℎ). We are not allowing the priorities

to vary with respect to the set of candidate slots.39

Theorem 6. No DASO rule is manipulable via slot hiding. In fact under any DASO rule,

if an airline hides a slot, then all airlines (weakly) worse off.

Proof. Suppose by contradiction that there is an instance I, airline B ∈ A, and slot ℎ ∈
Φ(B) such that some airline A gains when B hides ℎ. Let I ′ = IS→S∖{s} be the instance

obtained from I by deleting slot ℎ. Denote by Π the landing schedule output by DASO(≫s)S

for I; denote by Π′ the landing schedule output by DASO(≫s)S∖t for I ′. Finally, let Π′′ be

the landing schedule obtained from Π′ by “unhiding ℎ,” i.e. by self-optimizing the flights of

airline B over the slots CB(Π′(FB) ∪ {s}).
To simplify exposition, assume that the owner of any slot s has the highest priority for

that slot under ≫s. (This is without loss of generality due to the first step of DASO, in

which slots first propose to their owners.)

Since A gains by the hiding of ℎ, there must exist some f ∈ FA such that Π′′(f) < Π(f).

Without loss of generality, suppose that f ∈ FA is the earliest flight that receives an earlier

slot under Π′′ than under Π, i.e. let f ∈ FA be such that both Π′′(f) < Π(f) and

∀f ′ ∈ F ∖ {f}, Π′′(f ′) < Π(f ′) =⇒ Π′′(f ′) > Π′′(f). (1)

Denote s′ = Π′′(f).

Since DASO rules are non-wastefulness, s′ must be occupied by some f ′ ∕= f under Π

(otherwise it could be given to f); i.e. there exist A′ ∈ A and f ′ ∈ FA′ such that Π(f ′) = s′.

Airline A′ may or may not coincide with A or B.

Case 1: A′ = A. Both flights f, f ′ ∈ FA can feasibly use s′, but s′ = Π(f ′) < Π(f).

Therefore the Self-optimization step of DASO (applied to I) implies that either wf ′ > wf ,

or both wf ′ = wf and Π0(f ′) < Π0(f) (the tie-breaking condition). In either case, since

38This kind of possibility result for such group incentives contrasts with impossibility results on more
general domains such as Schummer (2000).

39One can imagine generalizing DASO rules to let ≫ be a function of various parameters, as we discuss
in Subsection 5.4. The Theorem might not hold for such generalizations.
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Π′′(f) = s′, this implies Π′′(f ′) < Π′′(f) (because Π′′ is self-optimized). This contradicts

eqn. (Equation 1), the assumption that f was the earliest flight to move up in Π′′.

Case 2: A′ ∕= A. Observe that at Π, A would strictly gain by receiving s′. That is, A

does not receive s′ under Π, but desires s′ in that both ef ≤ s′ and Π(f) > s′. Lemma 1

thus implies that s′ never proposed to A at any step of the DASO algorithm under I. Since

A′ receives s′ under I (hence s′ did propose to A′), s′ puts higher priority on A′ than on A:

A′ ≫s′ A.

If ℎ = s′ then we have A = B, and thus A ≫s′ A
′ (from the assumption on ≫ above).

Since this is a contradiction, we must have ℎ ∕= s′. This implies that A receives s′ under Π′.

In order for A to receive s′ when DASO is applied to I ′, s′ must propose to A, implying

that A′ must have rejected a proposal from s′ (A′ ≫s′ A) at some step of the algorithm.

Lemma 1 thus implies that A′ cannot strictly gain at Π′′ from receiving s′, hence Π′(f ′) <

s′ = Π(f ′). This contradicts eqn. (1).

Since both cases lead to a contradiction, no flight can move to an earlier slot following

the hiding of any vacant slot.

Theorem 6 is related to a result of Crawford (1991) in the generalized College Admissions

model with contracts of Roth (1984). Under assumptions also satisfied in our model, Craw-

ford shows that adding a student to an economy benefits all colleges when implementing

either the student-optimal or college-optimal stable outcome.40 Applied to our model, this

can be shown to imply that if a slot is destroyed, then all airlines would be (weakly) worse

off under a DASO rule. Our Theorem strengthens this conclusion: an airline cannot gain

even by temporarily hiding a vacant slot and later consuming it.

5.4 Generalizing DASO

The DASO rules described above are defined with respect to a fixed list of priority orderings

(≫s) of the slots. This concept can be generalized by allowing the priorities to be a function

of various parameters of I = (S,A, (FA)A∈A, e, w,Π
0,Φ0). For instance, after a rule asks

agents to report their ef ’s and wf ’s, a priority order could be determined as a function of

those parameters. DASO rules as described earlier would be a special case in which, of all

parameters of I, priorities depend only on A.

Intuitively it seems clear that such generalizations allow for more possibilities of manipu-

lation. Perhaps by misreporting some wf , an airline could obtain a higher priority for some

slot, making the rule w-manipulable in contrast to Theorem 5.

40See also Kelso and Crawford (1982) and Kojima and Manea (2010).
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However, by expanding the set of rules, one might hope to achieve a positive result

regarding e-manipulability. After all, Theorem 4 does not apply to such generalizations

since, by allowing ≫ to depend on w, the rule would no longer be simple. A basic example

demonstrates, however, that all natural generalizations of DASO rules also are e-manipulable.

Slot Flight Airline Earliest Weight

1 ∅ A

2 b2 B 1 1

3 a3 A 1 1

4 a4 A 2 5

Regardless of the structure of ≫, a DASO-based rule would ultimately assign a3 to

slot 1. Individual rationality then implies that b2 remains in slot 2, and a4 moves up to

slot 3. However, by misreporting e′a3 = 3, a DASO rule—in fact any nonwasteful, self-

optimized rule—moves a4 up to slot 2, which yields an improvement for A. The intuition in

this example is that A can “force” a trade my misreporting. On the other hand, a deferred-

acceptance-based rule—at least of the kind we propose here—that is designed to respect

individual rationality must give an airline highest priority among the slots it initially owns

under Φ0.

6 Weak Incentives and Self-optimization

The classic strategy-proofness condition makes it a dominant strategy for agents to truth-

fully reveal all of their preference information. Our three incentive compatibility conditions

weaken this concept in that each one requires this dominance only for a specific type of pref-

erence (or endowment) information, namely information pertaining to flight arrival times,

relative costs of flight delays, or flight cancelations. Despite this weakening, the results of

Section 4 and Theorem 4 show that these three conditions can be somewhat demanding.

Hence we weaken our conditions by eliminating only situations in which an airline can

manipulate in order to improve the positions of each of its flights. Such a condition was

introduced to this class of problems by Schummer and Vohra (2012) for the case of misre-

porting arrival times. They show that such a condition is satisfied by the two reallocation

rules they consider, as we discuss further below. We show that DASO rules also satisfy this

condition. The definition states that there should exist no misreport of arrival time that

strictly benefits one of A’s flights without hurting any of its other flights.
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Definition 14. A reallocation rule ' is weakly non-manipulable via earliest arrival

times if there is no instance I = (S,A, (FA)A∈A, e, w,Π
0,Φ0), airline A ∈ A, flight f ∈ FA,

and an earliest arrival time e′f such that, letting e′ be obtained from e by replacing ef with

e′f ,

∀f ∈ FA 'f (Ie→e′) ≤ 'f (I)

with strict inequality for at least one f ∈ FA.

Recall that if a rule is individually rational and FAA-conforming, then it is manipula-

ble via earliest arrival times (Theorem 4). The following possibility result is obtained by

weakening the incentives condition.

Proposition 7. DASO is weakly non-manipulable via earliest arrival times.

Proof. Fix a DASO rule corresponding to some priority ordering (≫). Fix an instance I,

airline B ∈ A, and flight g ∈ FB, and let Π be the outcome of the DASO rule for I.

Let I ′ = Ieg→e′g be the instance in which B misreports eg to be e′g, and let Π′ be the

outcome of the DASO rule for I ′. Suppose by contradiction that for all f ∈ FB, ef ≤
Π′(f) ≤ Π(f), and that Π′(f) < Π(f) for at least one such flight.

Since there is at least one slot that is assigned to distinct airlines under Π and Π′, denote

by s ∈ S the earliest such slot. Namely, s = Π(f) = Π′(f ′) for some f ∈ FA and f ′ ∈ FA′ ,

where A ∕= A′, and s is the earliest such slot.

Consider the number of slots airline A obtains at time s or earlier. By our choice of s, A

receives fewer such slots at Π′ than at Π. Therefore, B ∕= A.

Case 1: A′ ∕= B. Note that since A ∕= B ∕= A′, both A and A′ report the same arrival

times at both I and I ′.

Recall that under Π and Π′, the airlines receive the same sets of slots strictly earlier than

s. Since A receives s under Π, A could be made better off at Π′ by being offered s. Therefore

(following Lemma 1) s never proposed to A in the DASO algorithm under I ′, hence A′ ≫s A.

Symmetrically, since A′ receives s under Π′, A′ could be made better off at Π by being

offered s. The same arguments yield A≫s A
′, which is a contradiction.

Case 2: A′ = B. As above, B ∕= A implies A′ ≫s A (which in this case means B ≫s A).

Since A receives s at Π, A′ = B must have rejected s at some stage of the DASO algorithm

applied to I. Lemma 1 therefore implies that B cannot gain by receiving s at Π; in other

words, all of B’s flights that can feasibly use s must be assigned to even earlier slots under Π.

Since B receives the same number of such earlier slots at Π′, B cannot feasibly use s according

to the arrival times e reported at I. Therefore, B must have misreported an infeasible e′g
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causing it to receive a slot s that it cannot feasibly use under its true arrival times. This

contradicts the assumption that airline B = A′ benefits from such a misreport.

Schummer and Vohra (2012) consider two other simple rules: the Compression algorithm

currently used by the FAA and an adaptation of Shapley and Scarf’s (1974) Top Trading

Cycle algorithm which we denote TC. Without allowing for self-optimization, they show

that both of these simple rules also are weakly non-manipulable via earliest arrival times.

However both of those rules, like DASO rules, fail the stronger incentives condition, i.e. are

manipulable via arrival times.41

It turns out that the two weak incentives results of Schummer and Vohra (2012) are

robust to the self-optimization of the initial landing schedule.

Observation. Schummer and Vohra (2012) show that both the Compression algorithm and

their TradeCycle rule are weakly non-manipulable via earliest arrival times. If either rule

were augmented by first self-optimizing the initial landing schedule, then it would remain

weakly non-manipulable.

For space reasons we omit proofs.42

On the other hand, it turns out that if either rule were augmented by only self-optimizing

the resulting landing schedule (and not necessarily the initial one), then the resulting rule

would not satisfy even the weak incentives property.43 This observation reveals an interesting

subtle detail in the design of rules for environments such as ours. Specifically, if a central

planner can mandate which flights are to use which landing slots, then various rules can

satisfy our weak incentives requirement. On the other hand, if airlines are free to rearrange

their own schedules (as mandated by current US procedures), then some rules (e.g. the FAA’s

current Compression algorithm) may lose this weak incentives property.44

Finally, it is straightforward to define analogous versions of Definition 14 that weaken

non-manipulability via weights and via slot-destruction. It turns out that Theorems 2 and 3

can be strengthened by weakening the incentives conditions to these weaker versions. The

proofs of this use precisely the same examples as the proofs of the current theorems.

41This is not quite a consequence of Theorem 4 since these rules are not defined to include self-optimization.
The example in Subsection 5.4 can be used to prove the claim for both rules.

42Available in the online appendix.
43See online appendix.
44This observation is tied to the argument in Footnote 25, which uses a revelation principle argument to

say that, when airlines have the right to determine their own subschedule, it is without loss of generality to
restrict attention to self-optimized rules.
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7 Summary

The FAA initially creates a landing schedule that assigns flights to landing slots at an airport.

That initial landing schedule can become inefficient or even infeasible for various reasons,

including flight cancellations, flight delays, or a change in the quantity of available landing

slots due to changes in weather. Furthermore, some of the information needed to feasibly or

efficiently create a new landing schedule is privately known by airlines. Thus airlines must

be induced to report such information to a centralized authority (the FAA) who uses some

reassignment rule to design a new, feasible landing schedule.

We analyze this naturally occurring market-design problem by separately considering the

airlines’ incentive to report three different kinds of relevant information: the delay of flights,

the cancellation of flights, and the relative delay cost of each flight.

It is interesting to note that the FAA does not currently elicit information of the third

kind (relative delay cost). Such information is necessary to determine how airlines can make

Pareto-improving trades of slots. On the other hand, our first three results show that any

Pareto-efficient reassignment rule would be subject to manipulation in each of three ways:

misreporting flight delays, misreporting flight cancellations, or misreporting delay costs.

Phrased differently, under any of these three relatively weak incentive conditions, one cannot

hope to solicit relative cost information with the purpose of achieving full Pareto-efficiency.

For our next set of results, we strive only for a weaker efficiency condition of non-

wastefulness. Such landing schedules can be constructed without knowing the airline’s delay

costs. Hence such information need not be reported to the mechanism (consistent with

current practice of the FAA). Unfortunately such reassignment rules are also necessarily

manipulable by misreporting flight delays. However, we show that a class of rules motivated

by the Deferred Acceptance algorithm (DASO rules) does induce airlines to promptly report

flight cancelations. This property is not held by any other reassignment rule considered so

far for this application, including the FAA’s current Compression algorithm. Finally, we

show that DASO rules satisfy a weaker form of non-manipulability in flight delays defined

by Schummer and Vohra (2012).

When consider this application, the most natural models that come to mind are those of

trading indivisible objects, of constrained queuing, or of 1-sided matching à la Shapley and

Scarf (1974). Yet, by interpreting it as a 2-sided matching problem in the spirit of Gale and

Shapley (1962), we have derived a class of rules that best satisfy incentives properties among

the rules that have so far been considered in this application. This interpretation is analogous

to the way in which 1-sided School Choice models (Abdulkadiroğlu and Sönmez (2003)) are

analyzed as if they are 2-sided College Admissions models. Our model mirrors the School
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Choice model, in that the “College” side of the market (airlines) are the relevant agents,

while the “students” (slots) are the objects being traded.
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Abdulkadiroğlu, Atila, and Tayfun Sönmez. 2003. “School choice: a mechanism design approach.”

American Economic Review, Vol. 93, 729-747.
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A Online Appendix

This supplemental appendix is not for journal publication.

A.1 Airline preferences: substitutable but not responsive

Preferences in our paper are defined only over sets of a fixed cardinality. However, we show

that we cannot imbed such preferences into “responsive preferences” over sets of any size,

as defined in the college admissions literature.

Definition: A relation P defined over all subsets of slots is responsive when, for each

s, s′ ∈ S,

∙ for each S ′ ⊆ S ∖ {s}, we have S ′ ∪ {s} રw
A S ′ if and only if s P ∅; and

∙ for each S ′′ ⊆ S ∖ {s, s′}, we have S ′′ ∪ {s} રw
A S ′′ ∪ s′ if and only if s P s′.

The following example shows that some weight-based preferences over subsets of size ∣FA∣
are not consistent with any responsive relation over all subsets of S.

Example (Preferences of airlines are not responsive): Consider S = {1, 2, 3, 4, 5},
and let airline A have FA = {f, f ′, f ′′} with ef = 1, ef ′ = 2 and ef ′′ = 3, and with wf = 1.5,

wf ′ = 1 and wf ′′ = 8. This induces the following preference ordering ≻w
A over subsets of size

3.

≻w
A

1, 2, 3

1, 3, 4

1,3,5

2, 3, 4

2, 3, 5

3,4,5

1, 2, 4

1, 4, 5

2,4,5

1,2,5

Let P be a preference relation over all subsets of S that coincides with ≻w
A on the above

subsets. If P is responsive, then {1, 3, 5} ≻w
A {3, 4, 5} would imply {1} P {4} (by letting

S ′′ = {3, 5} in the definition of responsiveness). Similarly, {2, 4, 5} ≻w
A {1, 2, 5} would imply

{4} P {1} (by letting S ′′ = {2, 5}). Since these conclusions are contradictory, P cannot be

responsive.
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In various proofs below we denote A’s flights that can feasibly use s as

F s
A ≡ {f ∈ FA : ef ≤ s}.

For each airline A and each set of slots T ⊆ S, we say that T is feasible for A if there exist

a (feasible) landing schedule Π such that
∪

f∈FA
Π(f) ⊆ T .45

The following requirement reflects the notion that if a slot is chosen from a large set

T ′ ⊆ S, then it should still be chosen from within subsets of T ′.

Definition 15. (e.g. see Roth (1984)) Preferences of an airline A, yielding choice function

CA(), satisfy substitutability when for each T ⊂ T ′ ⊆ S, with T feasible for A, we have

[T ∩ CA(T ′)] ⊆ CA(T ).

It is straightforward to show the following.

Proposition 8. Preferences of airlines satisfy substitutability.

Proof. Let A ∈ A and let T ⊂ T ′ ⊆ S where T is feasible for A. Suppose that s ∈ T ∖ s /∈
CA(T ). We show s ∕∈ CA(T ′) concluding the proof.

Since s /∈ CA(T ), the flights F s
A all can be assigned to slots within T that are earlier

than s. This implies that F s
A = F s−1

A and ∣{s̄ ∈ T : s̄ < s}∣ ≥ ∣F s
A∣ = ∣F s−1

A ∣.
Since T ⊂ T ′ these inequalities imply ∣{s̄ ∈ T ′ : s̄ < s}∣ ≥ ∣F s

A∣ = ∣F s−1
A ∣. That is, the

flights F s
A can be assigned to slots within T ′ that are earlier than s. Therefore s ∕∈ CA(T ′).

A.2 Slot-propose and Airline-propose deferred acceptance coin-

cide

On our domain of problems, both the slot-proposing and airline-proposing versions of de-

ferred acceptance yield the same outcome. In other words, the slot-optimal and airline-

optimal stable matches coincide on our domain of landing slot problems. This equivalence

is straightforward when one side of the market has a common ranking of agents on the other

side of the market. While this common ranking does not hold in our model (due to the ef ’s),

there is “enough” commonality in their rankings for the result to hold. Indeed, any airline

that utilize slot 1 agrees that it is in a sense a “best” slot (though not “the” best slot, as a

highly weighted flight may ideally use some later slot). Therefore, stability will require slot 1

to go to the highest ranked airline that can use it. Conditional on this, a similar argument

requires slot 2 to go its highest-ranked airline that can use it, etc.

45Note that this implies ∣T ∣ ≥ ∣FA∣.
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Formalizing this, however, requires us to define an airline-proposing version of deferred

acceptance that respects the initial landing schedule in the same way that DASO rules do

in Step 0. Effectively, Step 0 is equivalent to modifying the priority orders ≫ so that each

slot ranks its owner (under the initial landing schedule) highest. Indeed DASO rules could

equivalently be defined this way. Here we define A-DASO rules using this convention. The

algorithm is basically three parts: modifying the priorities, classic deferred-acceptance, and

self-optimization as in DASO.

Definition 16. For a set of airlines A and profile of priorities (≫s) on A, the A-DASO

rule with respect to ≫ associates with every instance I ∈ ℐ(A) the landing schedule

computed with the following “A-DASO algorithm.”

Step 0: (Owner has top priority.) For each slot s, let ≫′s be the priority order

over airlines that satisfies (i) s ∈ Φ0(A) implies that A is ranked first in ≫′s, (ii)

s /∈ Φ0(B) ∪ Φ0(B) implies [B ≫′s C ⇔ B ≫s C].

Step k = 1: Each airline proposes to its favorite set of slots. Each slot s

tentatively accepts the offer of its highest ranked proposer under≫′s, and rejects

the other proposing airlines.

Step k = 2, . . .: If there were on rejections in the previous round, proceed to

the Self-optimization step. Otherwise, each airline A proposes to its favorite set

of slots from among those slots that have not already rejected A. (Note that by

substitutability, A will re-propose to all of the slots that accepted its offer in the

previous round.) Each slot s tentatively accepts the offer of its highest ranked

proposer under ≫′s, and rejects the other proposing airlines.

Self-optimization step: For each airline A, assign A’s flights to the slots who

accepted its proposal in the previous step so that the resulting landing schedule

is self-optimized. Break ties among equally-weighted flights by preserving their

relative order in Π0.46

Theorem 9. For any priorities ≫ and any instance I, the outcomes of the DASO rule

'≫(I) and the A-DASO rule associated with ≫ coincide.

Proof. Fix priorities≫, and suppose by contradiction that there is I such that Π ≡ '≫(I) ∕=
'A−DASO,≫(I) ≡ Π′. Let s be the earliest slot for which the rules differ: s = Π(f) implies

Π(f) ∕= Π′(f), and Π(f) < s implies Pi(f) = Π′(f).

46This tie-breaking is irrelevant as in DASO.
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Let As be the set of airlines A that can feasibly assign some flight f ∈ FA to s and assign

other flights in FA to each slot t < s that A receives under Π. It is obvious by feasibility

that both DASO and A-DASO must assign to s a flight from an airline in As. By Lemma 1,

DASO gives s to the highest ranked airline in As under ≫.

Denote this highest-ranked airline as A and suppose A-DASO yields the set of slots Π′(A)

to A. By definition, it is clear that s ∈ CA(T ∪{s}), i.e. A would choose to take s in exchange

for some other slot assigned by A-DASO. But this means that under an airline-proposing

version of DA, A would propose first to s before ultimately proposing to one of the other

slots in t > s that it ends up receiving. This means that s rejects A for one of the other

flights in As, contradicting the fact that A is highest-ranked in ≫′ among As.

A.3 Weak Incentives

Schummer and Vohra (2012) show that two simple rules—the FAA’s Compression algorithm

and the TC rule—satisfy weak non-manipulability via arrival times. Since their paper con-

siders only simple rules and weak incentives, they can ignore the part of airline preferences

represented here by weights wf . Consequently they need not consider whether any landing

schedule is self-optimized (since this is irrelevant when speaking of weak incentives).

Here we show that their incentives results are robust if we assume that the airlines (or the

rule) first self-optimize the initial landing schedule. If a self-optimization step is prepended

to the Compression algorithm (or the TC rule), then it is weakly non-manipulable via arrival

times.

Proposition 10. Consider the rule that first self-optimizes the initial landing schedule and

then applies the Compression algorithm. This rule is weakly non-manipulable via earliest

arrival times.

The same conclusion holds for the rule that applies Schummer and Vohra’s (2012) TC

rule to a self-optimized initial schedule.

Proof. Let ' denote the rule that first self-optimizes the initial landing schedule and then

applies the Compression algorithm. Fix an instance I, airline A, and flight f ∈ FA. Suppose

A misreports ef to be e′f ∕= ef . Let I ′ = Ief→e′f
. Denote Π = '(I) and Π′ = '(I ′) .

Let Π1 be the landing schedule that results from self-optimizing the initial landing sched-

ule Π0 using the parameters in I. Let Π′1 be the landing schedule that results from self-

optimizing Π0 using the parameters in I ′.

Suppose Π1 = Π′1, i.e. that A’s misreport has no effect on the self-optimization of Π0.

Then the Compression algorithm is applied to two (optimized) instances that differ only in
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ef (and not in initial schedules). The result of Schummer and Vohra (2012) thus implies the

result (since they take an arbitrary initial landing schedule as fixed and allow for arbitrary

misreports).

Suppose Π1 ∕= Π′1. Then the change of ef to e′f impacts the self-optimization exercise, so

it must be that Π1(f) ∕= Π′1(f). We show that f ends up either with an infeasible slot or a

later slot than it would without a misreport.

Case 1: e′f < ef .

Since Π′1 is self-optimal for I ′ but not for I, it must be infeasible for I, i.e. Π′1(f) < ef .

Since Compression never moves a flight to a later slot, Π′(f) ≤ Π′1(f) < ef , i.e. f receives

an infeasible slot. Therefore A does not benefit from this manipulation.

Case 2: ef < e′f .

Since Π1 is self-optimal for I but not for I ′, it must be infeasible for I ′, i.e. Π1(f) < e′f ≤
Π′(f). Since Compression moves no flight to a later slot, Π(f) ≤ Π1(f) < Π′(f), i.e. f gets

a strictly later slot after the misreport.

In both cases, the misreport cannot improve the outcome of each of A’s individual flights.

The proof is identical for TC.

More generally, any rule that is weakly non-manipulable by arrival times remains so if

the rule is augmented by first self-optimizing the initial landing schedule.

On the other hand, suppose such a rule does not self-optimize the initial schedule, but

performs self-optimization after the rule operates. The following example shows that such

rules can be manipulable in a strong way.

Example 1. This schedule is not self-optimized.

Slot Flight Airline Earliest Weight

1 ∅ C

2 a2 A 2 1

3 b3 B 1 5

4 a4 A 1 4

Since airline C has no flights, Compression assigns slot 1 to the earliest flight that can

use it, namely b3. Therefore A ends up with slots 2 and 3. Self-optimizing this allocation

puts a4 in slot 2, and a2 in slot 3. If A misreports ea2 to be 1, then Compression assigns a2

and a4 to slots 1 and 3. In actuality this is infeasible for a2, but self-optimization at this

point would put a4 into slot 1 and a2 into slot 3. This is a strong manipulation for A when

self-optimization is performed only after execution of Compression.
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The same manipulation in this example would benefit A if we apply a self-optimization

step only after using the TC rule of Schummer and Vohra (2012). That rule prescribes

the same outcome for instance I as Compression does. However, the manipulation by A

would assign flights a4 and a2 to slots 1 and 2 respectively. That is, again A has a strong

manipulation when self-optimization is performed only after execution of TC.
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